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Introduction

Scavenging of free radicals by antioxidant compounds is an 
important biological function that may maintain in the body a 
low oxidative damage [1-3]. Antioxidant compounds of different 
synthetic, and natural sources can scavenge these free radicals 
with the formation of less reactive species, and thus diminish 
the radical induced oxidative damage that is possibly associated 
with many diseases, including cancers [2-5]. Numerous classes 
of synthetic compounds have been screened to reveal their 
free radical scavenging ability, including synthetically obtained 
deoxyribonucleic acids (DNA) and nucleotide analogues like 
pyrimidine derivatives [6,7].

These pyrimidines, present in numerous pharmaceutically 
important compounds, have been known to prevent cancer cell 
proliferation. Substituted pyrimidines primarily display their 
anticancer activity through intercalating with DNA nucleotide 
bases. However, they may prevent ROS induced DNA mutations 
in a way similar to other anticancer and antiviral molecules [8-
11]. In recent years, anticancer drugs already being used in 
medical practice or being tested in clinical studies have been often 
based on pyrimidine skeleton, and new pyrimidine derivatives  

 
continue to show promising activities [12-15]. However, synthesis 
of antioxidant molecules can be a new approach to prevent 
proliferation of tumors whose growth is mediated by oxygen 
species [16].

Besides their anti-tumor action, pyrimidine derivatives have 
also been found to possess additional biological activities including 
antibacterial, anti-folate, antibiotic, anti-HIV, anti-fungal, anti-
mycobacterial, anti-leishmanial were also found to inhibit tumor 
necrotic factor alpha (TNF-α) production and as potent inhibitors 
of urease enzyme [17-21]. Herein, we report the free radical 
scavenging activities of a new library of pyrimidine derivatives 
to evaluate their potential against free radical sustained cancer 
cell proliferation. IN the past, a number of pyrimidines were 
also found to inhibit enzymes such as tyrosine kinases, urease, 
β-glucuronidase, and cholinesterase [22-25]. Furthermore, 
many pyrimidine analogues were found to exhibit inhibitory or 
modulatory activities in a number of biological situations [26,27]. 
Therefore, we screen these synthetic pyrimidine derivatives for 
their in vitro free radical scavenging activity as well as to establish 
their cytotoxicity in a 3T3 mouse fibroblast cell line (Figure 1).
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Figure 1: Basic Skeleton of Pyrimidines.

Material and Methods

All substituted pyrimidines were obtained from the in-house 
Molecular Bank facility of the Dr. Panjwani Center for Molecular 
Medicine and Drug Research, International Center for Chemical 
and Biological Sciences, University of Karachi, Pakistan. DPPH 
was purchased from Sigma Aldrich (Germany). Ethanol and 
dimethyl sulfoxide (DMSO) (reagent grade) were purchased 
from Sigma Aldrich (USA). Standard compounds, i.e., butylated 
hydroxytoluene was purchased from Sigma Aldrich (Germany).

DPPH Radical Scavenging Assay

The Kumari Madhu method of DPPH (2,2-diphenyl-1-picryl-
hydrazyl) assay [28] was used to measure the free radical 
scavenging activity with small variations. This assay is based 
on the reduction of DPPH radical (violet colour) by free radical 
scavenger with a change of colour to pale yellow. The intensity 
of colour conversion is directly related to the potency of free 
radical scavenging compounds, and to the extent of reduction in 

absorbance. In the visible region, absorbance reduction can be 
measure at 517 nm. Compounds solutions of (0.5 mM) in DMSO 
were prepared. Two-fold dilution method was used to dilute 
compounds solutions to different concentrations. 5 µl sample of 
each concentration was transferred to 96 wells plate in triplet, at 
517 nm pre read was recorded. 95 µl of 0.3 mM freshly prepared 
ethanolic solution of DPPH was added in each of the 96 wells. A 
final absorbance reading was taken at 517 nm. DMSO was used 
as negative control and butylated hydroxytoluene was used as the 
positive control. The radical scavenging activities were calculated 
by the following equation:

         %  Radical scavenging activity of DPPH

          =  [A0-A1/A0] ×100

Where:

A0: The absorbance of all reagents without the tested 
compounds.

A1: The absorbance in the presence of test compounds. 

MTT Assay

Figure 2: Concentrations dependent changes in free radical scavenging activities of pyrimidine derivatives [1–7].
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The pyrimidine derivatives were tested by the method 
previously described by Dimas et al. to establish their 
cytotoxicities in a normal cell line [29]. In 96-well plate, mouse 
fibroblast 3T3- cells (2 ×105 cells/ mL) were grown over night 
in DMEM medium along with 10% FBS, pen/ strep (100 units/ 
mL), supplemented with 5% CO2 at 37 ºC. After 24 h, the old media 
was discarded, cells were treated with different concentrations of 
the tested compound, and further incubated for 24 h. After 24 h, 

cells were washed, and the plate was again incubated with MTT 
solution for 4 h after which dimethyl sulfoxide 100uL added for 15 
min to dissolved formazan crystals at room temperature. Finally, 
a micro plate reader (SpectraMax Plus-384) was used to record 
the absorbance at 540 nm. The IC50 was calculated and defined 
as the drug concentration (µM) causing cytotoxicity in 50%. Cells 
(Figure 2). 

Results and Discussion

Free Radical Scavenging Activity

Figure 3: Concentrations dependent changes in free radical scavenging activities of pyrimidine derivatives [8–12].

The synthetic pyrimidine derivatives 1-28 were tested for 
their free radical scavenging, and cell cytotoxic potential. All 
compounds showed various degrees of radical scavenging activity 
in DPPH radical scavenging assay, and their IC50 values ranged 
between 42.9 ± 0.31 to 438.3 ± 3.3 μM. Derivatives 1, 3, 11, 13, 
18, 26, and 28 with IC50 values of 55.6 ± 2.1, 122.4 ± 1. 9, 107.65 
± 1.3, 108.4 ± 2.8, 113.4 ± 1.3, 42.9 ± 0.31, and 65.7± 1.80 µM, 
respectively, showed free radical inhibitory activity that is many 

folds better than the standard butylated hydroxytoluene with IC50 
value of 128.83 ± 2.1 µM, as depicted in Figures 2-5, and Table-
Compounds 2, 5, 8, 12, 19, and 27 showed good to moderate 
activities (Figures 2-5 & Table 1). The remaining derivatives, 
including 6, 7, 9,10, 15, 21, 22, 23, and 24 showed weak inhibitory 
activities (Figures 2-5 & Table 1). Derivatives 4, 14, 16, 17, 20, 25 
were declared as inactive derivatives of this series.

Figure 4: Concentrations dependent changes in free radical scavenging activities of pyrimidine derivatives  [13–21].

Structure- Activity Relationship

A structure-activity relationship established for all 
compounds that confirmed substitution of various functionalities 

at the aromatic ring confers free radical scavenging activity 
to each particular pyrimidine analogue. Analogue 26, a 
3,4-dihydroxybenzylidene was found to be the most active 
pyrimidine among the series, with an IC50 value of 42.9 ± 0.31 μM, 

http://dx.doi.org/10.19080/CTOIJ.2020.16.555940


How to cite this article: Qurat-ul-Ain. Free Radical Scavenging and Cytotoxic Activities of Substituted Pyrimidines. Canc Therapy & Oncol Int J. 2020; 
16(3): 555940.DOI: 10.19080/CTOIJ.2020.16.555940004

Cancer Therapy & Oncology International Journal 

corresponding to 84.07% radical scavenging activity that is as 
good as 85.87% radical scavenging activity of the standard drug 
(Tables 1 & 2). The high activity shown by analogue 26 is due to 
the positional change of dihydroxyl groups present an aromatic 

moiety (Table 1). Literature reports have also shown that the 
phenolic hydroxyl group is responsible for the antioxidant 
function [21,24] (Figure 3).
Table 1: Free radical scavenging activity of compounds [1–28].

Compounds IUPC Names R IC50 ± SEMa (μM)

1
5-(4-Hydroxy-3,5-dimethoxyben-
zylidene)-2-thioxodihydropyrimi-

dine-4,6(1H,5H)-dione O
OH

O
MeMe 55.6 ± 2.1

2
5-(2-Bromo-4,5-dimethoxyben-

zylidene)-2-thioxodihydropyrimi-
dine-4,6(1H,5H)-dione O

O

Br

Me
Me

198.2 ± 4.5

3
5-((2-Hydroxynaphthalen-1-yl)

methylene)-2-thioxodihydropyrimi-
dine-4,6(1H,5H)-dione

OH
122.4 ± 1.9

4 5-(Thiophen-2-ylmethylene)-2-thioxodihy-
dropyrimidine-4,6(1H,5H)-dione

S
NA

5 2-Thioxo-5-(3,4,5-trimethoxybenzylidene)
dihydropyrimidine-4,6(1H,5H)-dione

O

O

Me
Me

O
Me

132.6 ± 1.2

6 5-(4-(Methylthio)benzylidene)-2-thioxodihy-
dropyrimidine-4,6(1H,5H)-dione S

Me 209 ± 4.4

7
5-((6-Bromo-4-chloro-2-oxo-2H-chromen-
3-yl)methylene)-2-thioxodihydropyrimi-

dine-4,6(1H,5H)-dione
O

Br
Cl

O

322.4 ± 1.9

8 5-(Pyridin-4-ylmethylene)-2-thioxodihydro-
pyrimidine-4,6 (1H,5H)-dione N 179.7 ± 6.2

9 5-((6-Methylpyridin-2-yl)methylene)-2-thiox-
odihydropyrimidine-4,6 (1H,5H)-dione

NMe
211.2 ± 4.6

10
5-(4-Bromo-2,5-dimethoxyben-

zylidene)-2-thioxodihydropyrimidine-4,6 
(1H,5H)-dione

O

Br

Me

O
Me 204.5 ± 3.5

11 5-(3-Hydroxy-4-methoxybenzylidene)-2-thi-
oxodihydropyrimidine-4,6 (1H,5H)-dione O

OH

Me 107.65 ± 1.3
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12 5-(3,4-Dimethoxybenzylidene)-2-thioxodihy-
dropyrimidine-4,6 (1H,5H)-dione O

O

Me

Me
170.4 ± 2.5

13
5-(4-Hydroxy-3-iodo-5-methoxyben-

zylidene)-2-thioxodihydropyrimidine-4,6 
(1H,5H)-dione

I

HO
O

Me

108.4 ± 2.8

14 5-(Anthracen-9-ylmethylene)-2-thioxodihy-
dropyrimidine-4,6 (1H,5H)-dione NA

15 5-(2-Hydroxy-4-methoxybenzylidene)-2-thi-
oxodihydropyrimidine-4,6 (1H,5H)-dione O

Me
OH

284.2 ± 5.9

16
5-(2,4-Di-tert-butyl-3-chloroben-

zylidene)-2-thioxodihydropyrimidine-4,6 
(1H,5H)-dione

Me

Me
Me

Cl

Me

Me Me
NA

17 5-(2-Aminobenzylidene)-2-thioxodihydropy-
rimidine-4,6 (1H,5H)-dione NH2

NA

18
5,5’-(1,4-Phenylenebis(methanylylidene))

bis(2-thioxodihydropyrimidine-4,6 
(1H,5H)-dione)

HN

N
H

O

O

O
113.45 ± 1.130

19
5-(3,5-Dibromo-4-hydroxyben-

zylidene)-2-thioxodihydropyrimidine-4,6 
(1H,5H)-dione

HO

Br

Br

170.87 ± 1.34

20 5-(4-(Dimethylamino)benzylidene)-2-thioxo-
dihydropyrimidine-4,6 (1H,5H)-dione N

Me

Me

NA

21 5-(2-Methylbenzylidene)-2-thioxodihydropy-
rimidine-4,6 (1H,5H)-dione

Me

438.3 ± 3.3

22 5-(4-Ethoxybenzylidene)-2-thioxodihydropy-
rimidine-4,6 (1H,5H)-dione O

230.7 ± 2.6

23 5-(2,4-Dihydroxybenzylidene)-2-thioxodihy-
dropyrimidine-4,6 (1H,5H)-dione OHHO

231.9 ± 6.9
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24 5-(2-Hydroxy-3-methoxybenzylidene)-2-thi-
oxodihydropyrimidine-4,6 (1H,5H)-dione

OH
O

Me

200.6 ± 1.8

25 5-((5-Methylfuran-2-yl)methylene)-2-thioxo-
dihydropyrimidine-4,6 (1H,5H)-dione OMe NA

26 5-(3,4-Dihydroxybenzylidene)-2-thioxodihy-
dropyrimidine-4,6 (1H,5H)-dione

OH
HO 42.9 ± 3.605

27 5-(2-Hydroxy-5-methoxybenzylidene)-2-thi-
oxodihydropyrimidine-4,6 (1H,5H)-dione

O
Me

OH
177.1 ± 3.6

28 2-Thioxo-5-(2,3,4-trihydroxybenzylidene)
dihydropyrimidine-4,6(1H,5H)-dione OHHO

OH

65.7 ± 1.80

BHTb 2,6-Di-tert-butyl-4-methylphenol

OH

128.83 ± 2.1

aSEM is the standard error of the mean, BHTb: Butylated hydroxytoulene

Table 2: % Free radical scavenging activities of selected pyrimidine derivative.

Compounds % Radical Scavenging Activity Compounds % Radical Scavenging Activity

1                                    91.58 15 70.64

2 89.25 16 2.61

3 89.85 17 1.52

4 13.45 18 75.84

5 90.43 19 81.95

6 78.00 20 19.29

7 62.01 21 53.44

8 74.35 22 70.78

9 73.81 23 81.96

10 75.00 24 81.72

11 79.85 25 15.54

12 90.76 26 84.07

13 89.95 27 81.36

14 34.92 28 74.69

% RSA: % Radical Scavenging Activity, Butylated hydroxytoulene (BHT) % RSA: 85.87.
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Compound 1 is the second most potent derivative among 
the series, containing 4-hydroxy-3,5-dimethoxy groups with 
IC50 of value 55.6 ± 2.1 µM, with corresponding 91.58% radical 
scavenging activity (Tables 1 & 2). With 74.69% radical scavenging 
activity derivative 28 with three hydroxyl groups at 2,3, and 
4-positions, was found to be the third most effective derivative of 
the series (Tables 1 & 3). The lesser activity shown by analogue 28 
as compared to compound 26 might be due to the extra hydroxyl 
group which creates some steric hindrance (Tables 1 & 2). In 
this study, we observed that all other hydroxyl group containing 
derivatives, such as 3, 11, 13, 15, 19, 23 and 27, also showed 
antioxidant activity. The lesser activity shown by analogue 28 as 
compared to compound 26 might be due to the extra hydroxyl 
group which creates some steric hindrance (Tables 1 & 2).

In this study, we observed that all other hydroxyl group 
containing derivatives, such as 3, 11, 13, 15, 19, 23 and 27, also 
showed antioxidant activity. The difference in their activity seems 
to be either due to the number, position, and presence of other 
substituents along with the hydroxyl group (Table 1). Compound 
8, and 12 have almost identical free radical scavenging activity 
with 74.3%, and 90.76 % (Table 2) (Figure 4). The moderate 

activity of compound 8 may be due to the lone pair of electrons 
on the pyridine nitrogen while in derivative 12, due to the 
presence of two methoxy groups (Table 1).  Compound 7, and 
with (6-bromo-4-chloro-2-oxo-2H-chromen-3-yl) and (6-bromo-
4-chloro-2-oxo-2 -chromen-3-yl) substitutions were found to be 
the least active of the series (Tables 1 & 2).

The anthranyl analogue 14, di tert-butyl compound 16, 
derivative 17 having aminobenzylidene, derivative 20 with 
dimethylamino group, methylfuryl molecule 25, and thiophenyl 
derivative 4 did not show any antioxidant activity 4-Bromo-2,5-
dimethoxy compound 10 and 2-bromo-4,5-dimethoxy analogue 
2 have the same substituents but their positions are different, 
providing little difference in their activities (Table-1) (Figure 5). 
By changing the substituent from p-thiomethyl, as in analogue 6, 
to an amino groups such as N, N-dimethyl amino derivative 19 
and methyl-2-pyridinyl molecule 9, it was observed the amino 
analogues showed greater radical scavenging activity than the one 
with p-thiomethyl and N, N-dimethyl amino functionalities. This 
might be due to the better ability of the former to provide free 
electrons (Tables-1, and 2).

Figure 5: Concentrations dependent changes in free radical scavenging activities of pyrimidine derivatives [22–28].

Cell Cytotoxic Activity

Cytotoxicity of compounds 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 
19, 20, 21, 24, 25, 26 and 28 was carried out by using mouse 
fibroblast 3T3 cell line. Derivatives 1, 3, 5, 6, 8, 9, 12, 13, 15, 
19, 21, 24, 25, 26 and 28 exhibited non-cytotoxicity in mouse 

fibroblast 3T3 cell line (Table 3). Derivatives 7 and 20 were found 
to have weak cytotoxic effect with IC50 values of 27.038 ± 0.26, and 
22.4 ± 0.76, µM, respectively. However, compound 2 was found to 
be moderately cytotoxic with IC50 value of 19.482 ± 0.406 µM, and 
only compound 10 was found to be cytotoxic with IC50 value of 
7.038 ± 0.26 µM.

Table 3: Cytotoxicity studies of selected pyrimidine derivatives.

Compounds Cell Cytotoxicity (3T3 cell line) IC50 (µM)± SEM Compounds Cell Cytotoxicity (3T3 cell line)IC50 (µM) ± 
SEM

1 >30 12 >30

2 19.482 ± 0.40 13 >30

3 >30 15 >30

5 >30 19 >30

6 >30 20 22.4 ± 0.768
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7 27.038 ± 0.26 21 >30

8 >30 24 >30

9 >30 25 >30

10 7.038 ± 0.26 26 >30

Cycloheximide 0.26 ± 0.1 28 >30

SEM: Standard Error Mean, Cycloheximide Standard Drug

Conclusion

The present study identifies new series of pyrimidines as 
potential radical scavengers. All analogues were found to display 
diverse free radical scavenging potential when compared with 
the standard butylated hydroxytoluene. Compounds 1, 3, 11, 13, 
17, 25, and 27, with IC50 values of 55.6 ± 2.1, 122.4 ± 1.9, 107.65 
±1.3, 108.4 ± 2.8, 113.4 ±1.3, 42. 9± 0.31, and 65.7 ± 1.80 µM, 
respectively, showed good free radical scavenging potential better 
than the standard butylated hydroxytoluene having IC50 value 
of 128.83 ± 2.1µM. Cytotoxic evaluation of selected derivatives 
further support our study. Compound 1, 13, and 25 were 
identified as non-cytotoxic against 3T3 cells; therefore, these can 
serve as lead compounds for further development as potential 
drug candidates to scavenge reactive oxygen species.
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