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Introduction
Diamond-like carbon (DLC) is considered as a versatile 

coating material that finds a variety of mechanical and biomedical 
applications, including endoprosthesis and dental implants [1]. 
It provides mechanical robustness and cell-compatibility at the 
same time. Therefore, DLC has been extensively researched 
for achieving high hardness, low friction, high wear resistance 
to make it more sustainable [2]. Furthermore, DLC coatings 
are antithrombogenic and noncytotoxic. Consequently, they 
are being critically explored for various in-vivo and in-vitro 
biomedical applications ranging from orthopaedic applications 
to cardiovascular as well as neural interfacing agent. As such, 
DLC coatings has been certified as biocompatible in both in vitro 
and in vivo studies due to their strong C-C bonding environment 
[3,4]. 

In this article, the recent biomedical applications of DLC 
coatings have been briefly discussed together with promising 
prospects. The properties of DLC coatings can be tailored by 
manipulating the bonding environment between sp3 and sp2 
hybridized carbon atoms and their relative contents. In DLC, 
the sp3 hybridized carbon (diamond) which is responsible for 
excellent mechanical properties, is irregularly mixed with the 
sp2 carbon (graphite) which generally acts as filler contents  

 
within sp3 carbon matrix, and therefore justifies the name, 
diamond-like carbon [5]. 

Figure 1: Biomedical applications of diamond-like carbon 
coatings.

However, the general functionality of DLC films depends 
on the sp2/ sp3 ratio which can be varied within a certain limit 
depending on the synthesis technique and conditions. Therefore, 
different metal nanoparticles (Au, Ag, Si, Cu, Cr, Ti, Ni, Zn, Fe, W, 
V etc.) and non-metal elements (H, N, F, B, O etc.) are doped into 
DLC films to tailor the physical and chemical properties suitable 
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Abstract 

Graphene and carbon nanotubes are widely spread carbon allotropes for advanced nanotechnological applications. However, they are 
not popular for biomedical applications due to cytotoxic effects. In this respect diamond-like carbon (DLC), being mechanically stable and 
noncytotoxic, is spreading rapidly for protective coatings in orthopedic and stent research. Very recently, DLC through proper functionalization, 
is emerging as potential material for advanced applications, such as, biomolecular monitoring, cancer therapy and neural cell culture etc. This 
review summarizes the important biomedical advancements of DLC coatings. 
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for different biomedical applications [6]. Figure 1 illustrates 
pure DLC structure and summarizes important biomedical 
applications with different types of DLC coatings. DLC coatings 
for orthopedic and dental applications are well explored. For 
knee and hip joints, pure DLC coatings are not suitable because 
the peak loads reach upto 3.4–3.9 times higher than the body 
weight [7]. Moreover, both sp3-C and hydrogen (H) content 
influence the mechanical properties in DLC and as such, a high 
sp3 fraction can lead to delamination of the coatings on metal 
surfaces due to compressive internal stress generated during 
synthesis process [6]. 

For such applications, Si doped DLC (Si: DLC) is utilized due 
to its low friction coefficient and high wear resistance against 
sliding and mechanical forces. For applications where bio-
mechanical stability of DLC coatings is concerned, the important 
parameters are low surface energy, low friction, low roughness, 
high thermal stability, low wear, low electrical resistivity, and 
high biocompatibility which can be achieved through different 
metal (Si, Cr, Ti) or non-metal (N, H, B) doping or strategic 
combination of both metal and nonmetal elements, such as, 
Si doped carbon nitride films for efficient biocompatible and 
orthopedic applications [8]. DLC surface energy and roughness 
dictate the cellular response and hemocompatibility. Such 
properties are also essential for cardiovascular implantable 
devices particularly stents [9]. As compared to other synthesis 
techniques, DLC coatings processed through different 
plasma depositions are usually certified as hemocompatible/
biocompatible as they can prevent the adhesion and activation of 
platelets and preferentially promote the adsorption of albumin 
over fibrinogen. 

Figure 2: Proactive biofunctionalization of coronary stents using 
plasma discharges in carbon-based atmospheres. The stent is 
electrically biased to accelerate plasma positive ions towards 
the growing coating, creating therefore a radical-rich plasma 
activated coating (PAC). [9, copyright to Elsevier (2015)].

Recent advances suggest that plasma enhanced chemical 
vapour deposition can be used to prepare DLC films that allow 
for the linker-free immobilization of bioactive molecules (Figure 
2) [7,9]. The excellent antithrombogenic properties of DLC 
coating, such as, amorphous hydrogenated DLC (a-C:H), P-doped 
DLC [10], fluorine and hydrogen co-doped DLC (a-C:H:F) which 
is maintained over 30 days and temperature upto 90 °C and 

hence promises for a commercialized stent coating material 
for nextgeneration medical devices [11]. Osteogenesis is a 
genetic disorder characterized by bones that break easily, 
often from little or no apparent cause. DLC have demonstrated 
improvement in the propagation of osteoblasts particularly for 
in vitro conditions. Titanium oxide (TiO2) doped DLC and DLC 
coated silicon nitride (Si3N4) substrate are also considerable in 
such respect [12,13]. Recently, Zn doped DLC, is reported from 
which the amount of released Zn ions is controlled by altering 
the manufacturing process [14]. 

The Zn:DLC coating enhances the calcification of an osteoblast 
cell line via an alkaline phosphatase (ALP) independent 
mechanism which is promising for curing osteogenesis. 
Candidias is contamination is related to parenteral nutrition, 
and it is transmitted through the hands of healthcare workers 
and especially through use of catheters. It is a big problem for 
hospitalized patients, especially those in critical condition, and 
is the fourth leading cause of bloodstream infection [15]. Santos 
et al. [16] has recently used camphor containing DLC coating 
to prevent the Candida albicans yeasts fouling on polyurethane 
substrate which is commonly used for catheter manufacturing. 
The camphor:DLC and DLC films reduced the biofilm growth by 
99.0% and 91.0% of Candida albicans, respectively, compared 
to bare polyurethane. These results promise the utilization of 
functionalized DLC coatings with biofilm inhibition properties 
for production of advanced catheters or for other biomedical 
applications.

Silver nanoparticle (Ag NP) doped DLC is efficient for 
antibacterial coating applications [17]. Ag NPs react with sulfur-
rich proteins in the bacteria cell membrane and the interior of 
the cell or with phosphorous-containing compounds, such as 
DNA. Accordingly, the morphological changes in the bacteria 
cell membrane and the possible damage of DNA, caused by 
the reaction with Ag NPs, disturb the respiratory chain or cell 
division processes, leading to cell death [18]. The Ag NPs are 
known to get oxidized to Ag+ ions when they interact with water 
molecules. It is well agreed that the antimicrobial activity of Ag 
NP based nanocomposites is basically related to their ability to 
release Ag+ over time [19]. 

Recently, a new type of antibacterial bandage is proposed 
where Ag:DLC coated synthetic silk tissue is utilized as a 
building block [20]. The efficiency of the Ag+ ions released 
to the aqueous media is found to increase further through RF 
oxygen plasma etching of the Ag:DLC coating. The bandage 
prototype contains about 3.12 at % Ag nanoparticles of diameter 
23.7nm. This amount is well below the toxic level (upto 13.5 
µg/mL) for organism cells and can kill more than 99.9% of all 
strains of bacteria after 320min, including methicillin-resistant 
Staphylococcus aureus.

Core-shelled structured DLC coatings with dispersed Ag and 
Au nanoparticles show excellent and stable surface plasmon 
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resonance (SPR) properties [21,22]. Such structures are also 
effective to reduce the internal stress in DLC coatings [6,23]. This 
opens up for a DLC-SPR based label-free bio-detection method 
which has emerged during the last two decades as a suitable and 
reliable platform in clinical analysis for biomolecular interactions 
[24]. The technique makes it possible to measure interactions 
in real-time with high sensitivity and without the need of labels 
(Figure 3a). In recent years, SPR is being utilized for monitoring 
antibodies, proteins, enzymes, drugs, small molecules, peptides, 
and nucleic acids in biofluids collected from patients afflicted 
with a series of medical conditions (Alzheimer’s, hepatitis, 
diabetes, leukemia, and cancers such as prostate and breast 
cancers, among others) which demonstrate the progress of SPR 
sensing in clinical chemistry [24,25]. 

Figure 3: (a) Au nanoparticle based surface plasmon resonance 
aided biosensors for medical diagnostics [25, copyright to 
American Chemical Society (2017)], (b) The kanzius radio 
frequency therapy as cancer treatment method that is potential 
to replace the radiation and chemotherapy [26, copyright to 
Ispub.com (2007)].

Au:DLC and Ag:DLC coatings can become golden coating 
material for such applications. DLC/metal nanoparticles based 
core-shell structure is also promising for cancer treatment 
through photo-thermal therapy (PTT) which is a minimally-
invasive therapy in which photon energy is converted into heat 
to kill cancer (Figure 3b) [26,27]. Gold nanoparticles absorb 
light strongly and convert photon energy into heat quickly and 
efficiently, thereby making them superior contrast agents for 
PTT [28]. The superior SPR of Au:DLC core-shell structure could 
be very effective in this case.

DLC coatings has recently been evaluated as a growth 
substrate for neurons and Schwann cells which is quite 
interesting [29]. DLC is modified by UV functionalization method 
to introduce surface-bound amine (-NH2) and aldehyde (-CHO) 
groups. Such functionalization process increases the wettability 
of DLC which significantly increases the adhesion of neurons 
seeded to the surface. The amine functionalized DLC promotes 
adhesion of neurons and fosters neurite outgrowth to a degree 
indistinguishable from positive control substrates (glass coated 
with poly-L-lysine). Furthermore, aldehyde-functionalized 
DLC surfaces also show similar behavior and both additionally 
support the adhesion and growth of primary rat Schwann cells 

(Figure 4). This demonstrates a way to harness these properties 
of DLC coatings for development of implantable advanced 
devices to interface with the nervous system. 

Figure 4: Fluorescence micrographs of primary rat Schwann 
cells cultured for 21 days. (a) Glass. (b) Poly-L-lysine (PLL), a 
synthetic adhesion factor commonly used in neural cell culture. 
(c) Pristine DLC. (d) DLC-NH2. Cells were immunolabelled for 
S100β. Scale bars: 100 μm. [30, copyright to Elsevier (2016)].

Recently researchers have reported DLC coatings which are 
thermally stable upto 500 °C without compromising mechanical 
properties [30]. Furthermore, researchers are finding innovative 
ways to fabricate superior DLC coatings. For example, Erdemir 
et al. [31] have invented DLC tribofilms synthesized from 
lubricating oils which show excessively advanced mechanical 
properties. Such DLC coatings are potential to accelerate 
considerable advancement in its applicability and usefulness for 
various biomedical applications.

Conclusion and prospect
Diamond-like carbon coatings are very useful for different 

biomedical applications ranging not only to traditional 
orthopedic and cardiovascular applications but also for cancer 
treatment, functional coatings on stents, combating candidiasis 
proliferation as well as neural cell culture. The applicability of 
DLC coatings in biomedical fields depends on their mechanical 
and cytotoxic properties. Such properties are found to depend on 
the morphology, bonding environment and chemical properties 
of the DLC coatings. Although numerous attempts have been 
performed and are being explored to understand the mechanism 
for advanced biomedical application of DLC coatings through 
different metal and non-metal doping and surface activation 
through plasma-assisted techniques or chemical methods, more 
research focus is required to trigger a breakthrough in achieving 
biomedically practical DLC coatings.
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