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Introduction

Recent advances in genome editing technologies have 
substantially improved our ability to harnesses programmable 
nucleases to cut and paste genetic information in a targeted 
manner in living cells and organisms [1]. Programmable 
nucleases, particularly the CRISPR/Cas system, are already 
revolutionizing our ability to interrogate the function of the 
genome and can potentially be used clinically to correct or 
introduce genetic mutations to treat diseases that are refractory 
to traditional therapies. Recently, the programmable nuclease 
Cas9 and other genome-editing proteins have been shown to 
mediate editing of disease-associated alleles in the human 
genome, facilitating new treatments for many genetic diseases 
[2-6].

CRISPR-Cas Systems
The CRISPR/Cas systems are classified into three major 

types that differ by the repertoires of cas genes, the organization 
of cas operons and the structure of repeats in the CRISPR arrays 
contain cas3, cas9 and cas10 being the signature genes for the 
type I, type II and type III systems, respectively [7]. The simplest 
among the CRISPR-Cas systems is type II which consists of two 
components: a molecular scalpel (Cas9) that cuts DNA and an 
RNA guide complex is found Clustered with short DNA repeats 
of viral origin found in the bacterial genome (CRISPR) [8]. The 
endonuclease CRISPR-associated protein Cas9 cleaves DNA 
according to the sequence within an RNA duplex and creates 
site-specific double-strand break. [3,9]. 

Compared with other gene editing tools such as ZFNs and 
TALENs, target design simplicity with only three required 
components (Cas9 along with the crRNA and trRNA), high 
efficiency and multiplexed gene deletion or insertion makes this 
system top candidate for a new generation of powerful tools 
for new treatment of such genetic diseases as cystic fibrosis, 
muscular dystrophy and hemophilia. Efficient intracellular 
protein delivery system in vitro and especially in vivo has 
been a persistent challenge in biomedical research and protein 
therapeutics [10-18]. The CRISPR-Cas technology in combination 
with better delivery systems dramatically improved the 
specificity and efficacy and may find more applications in gene 
therapy. But to work well, the new gene-clipping tool must be 
delivered safely across the cell membrane and into its nucleus, 
a difficult process that can trigger the cell’s defenses and trap 
CRISPR/Cas9, greatly reducing its treatment potential [19-21].

From Gene Editing to Gene Delivery

Recently, CRISPR/Cas9 system has attracted tremendous 
attention from both scientists and clinicians came out in different 
fields, especially with those diseases that remained untreatable 
for a long time such as AIDS, cancers and degenerative 
diseases. The following are just few examples to demonstrate 
the increasing popularity of this technology among clinical 
and scientific researchers [20]. CRISPR/Cas9 was thought to 
be a useful tool for in-depth understanding of carcinogenesis 
processes; facilitate systematic analysis of gene functions and 
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cells reprogramming [3,22-29]. Scientists demonstrated that 
CRISPR/ Cas9 technologies had the capability for a promising 
and sustained genetic therapy for HIV, neurodegenerative 
diseases and retinal degenerative disease [30-34]. 

CRISPR/Cas9 has also been applied in large-scaled 
genetic screening for drug targeting [3]; producing genetically 
engineered animal models, developing new antiviral treatments 
and drug discovery [28, 35]. All these researches made CRISPR/
Cas9 a “magic” technology in the scientific world and brought 
this new technology to an unprecedented level. The therapeutic 
potential of protein-based genome editing is dependent on 
the delivery of proteins to appropriate intracellular targets 
[36]. However, delivering protein and RNA remains a central 
challenge in drug delivery. Most protein therapeutics, such as 
enzymes [38], antibodies [39] or transcription factors [40] 
suffer from low stability and poor cell membrane permeability 
as a result of their fragile tertiary structures and large molecular 
sizes [37]. The strong negative charges of RNA therapeutics, 
including siRNA or miRNA, blocks them from diffusing across 
cell membrane and their susceptibility to endonuclease often 
requires chemical modification to prevent degradation [41]. 

A challenge to efficient delivery of genome-editing proteins 
is their proteolytic instability and poor membrane permeability. 
Thus, there remains a great demand for the development of novel 
platforms that efficiently assemble protein into nanoparticles 
for intracellular delivery while maintaining biological activity of 
the protein [16]. 

A Variety of non-viral vectors, including liposomes, cationic 
polymer, and nanoparticles have been employed in both gene 
therapy related experiments and gene therapy clinical trials. 
Unlike conventional delivery systems that primarily focus on 
direct, newer delivery modalities such as nanocarriers have 
been focused on more specificity and efficacy performance [20]. 
Thus non-viral gene delivery systems have been extensively 
studied in the past decades. Non-viral gene delivery techniques 
by nanotechnology tools such as application of polysaccharide 
nanoparticles, cationic liposome nanoparticles , calcium 
phosphate nanoparticles and nanoneedlesin parallel with 
efficient and safe genome editing tools such as ZFN, TALEN, and 
CRISPR/Cas9 nuclease systems, are new tools for developing 
clinically approved cell-based therapeutics [42-44]. 

These systems are more reliable since they avoid the high 
risks associated with using viral vectors such as insertional 
mutagenesis and undesired immune rejection, provide life-long 
therapy by more policed insertion of the therapeutic gene into 
the desired site, target a broader range of disorders due to their 
capability to accommodate genes of different sizes, and finally, 
provides higher activity owing to their ability to target hard- to-
transfect human cells [20]. Additionally, nano drug has strong 
ability to cross biological membrane barriers which greatly 
improve the bioavailability of poorly soluble drugs.

Advances in Gene Editing Delivery Tools by 
Nanotechnology

RNA-guided endonucleases (RGENs) derived from the 
CRISPR/Cas system represent an efficient tool for genome editing. 
RGENs consist of two components: Cas9 protein and guide RNA. 
Recently, in vivo wound modification new delivery modalities 
include conjugated nanoparticles, multi-electrode arrays, 
microfabricated needles and nanowires are more efficiently 
managing the specific performance requirements of cutaneous 
modification [46]. In the case of conjugated nanoparticles, 
recently, Ramakrishna et al. [45] have demonstrated in human 
embryonic stem cells, dermal fibroblasts, human embryonic 
kidney cells (HEK), HeLa and embryonic carcinoma cells that 
cell-penetrating peptide conjugated with both the Cas9 protein 
and guide RNA sequences could achieve modest modification 
rates, a key milestone in terms of combining this delivery 
nanotechnology with CRISPR-Cas9.

Additionally, microfabricated needle and nanowire array 
concepts for delivery of genetic and drug constructs has been 
demonstrated with varying degrees of success in a wide range 
of human cell types which mostly rely on transient or semi-
transient physical compromise of target cell membranes via 
micron-sized needle structures to pass transgenes to cells 
[47]. Hybridization of microneedle physical delivery design 
in concert with localized electroporation in a pseudo-multi-
electrode array fashion is a technology called nanoinjection. 
More specifically, first-generation nanoinjection consisted of a 
micro-electromechanical system (MEMS) that uses electrostatic 
attraction of DNA onto a silicon micro-sized solid lance that is 
then inserted into mouse embryos before electrically releasing 
exogenous DNA into the host [46,48]. This same technology 
has been modified in a second generation to consist of a 
microfabricated silicon wafer that has a grid of four million 
10-micron-length lances allow for effective delivery of genetic 
loads to hundreds of thousands of cells simultaneously [49]. 

As an emerging method, nanoinjection shows promise in 
regard to in vitro CRISPR-Cas9 chronic wound applications, given 
the high efficiency of transfection and high cell survival rates 
as well as the lack of cytotoxic effects. Utilizing this approach, 
researchers have recently modified a non-viral transfection 
technology, named lance array nanoinjection (LAN), utilizes 
a microfabricated silicon chip to physically and electrically 
deliver genetic material to large numbers of target cells by using 
the CRISPR-Cas9 system to edit the genome of isogenic cells. 
These findings have shown the LAN’s ability to deliver genetic 
material to cells and indicate that successful alteration of the 
genome is influenced by a serial injection method as well as 
the electrical current settings [50]. Furthermore, researchers 
found that genome editing using LAN follows a non-linear 
injection-dose response, meaning samples injected three times 
had modification rates as high as nearly 12 times analogously 
treated single injected samples [46].
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In addition, researchers have successfully designeda 
promising delivery technology for CRISPR-Cas9 based on 
biologically inspired yarn-like DNA nanoclew (NC) genome 
editing [51]. The DNA NCs are synthesized by rolling circle 
amplification (RCA) with palindromic sequences encoded to 
drive the self-assembly of nanoparticles [52-57]. It has been 
shown previously that the DNA NC could encapsulate the 
chemotherapeutic agent doxorubicin and drive its release based 
on environmental conditions [58]. The biologically inspired 
vehicles were efficiently loaded with Cas9/sgRNA complexes 
and delivered the complexes to the nuclei of human cells, thus 
enabling targeted gene disruption while maintaining cell viability 
[59]. The DNA NC can load and deliver the Cas9 protein together 
with a sgRNA for genome editing. Inspired by the ability of single 
stranded DNA (ssDNA) to base pair with the guide portion of the 
Cas9-bound sgRNA [60]. 

Following loading of the DNA NC with the Cas9/sgRNA 
complex, a coating of the cationic polymer polyethylenimine 
(PEI) has applied to help induce endosomal escape [61]. The 
Cas9/sgRNA complex delivered to the cytoplasm could then 
be transported into the nucleus via nuclear-localization-signal 
peptides fused to Cas9 [51]. It has been approved that Editing 
was most efficient when the DNA nanoclew sequence and the 
sgRNA guide sequence were partially complementary, offering a 
design rule for enhancing delivery. Overall, this strategy provides 
a versatile method that could be adapted for delivering other 
DNA-binding proteins or functional nucleic acids [59].

One of the most advanced methodologies for delivering 
Cas9 in vivo is Gene therapy with adeno-associated viruses 
(AAVs) [62, 63]. However, there are some challenging issues 
aboutAAV delivery such as human population immunity 
towards AAV, significant off-target genomic damage due to 
the sustained expression of Cas9 [64-65] and using multiple 
viruses to Cas9 ribo nucleo protein (RNP) and donor DNA in 
vivo delivery regards to the AAV small packing size [21,66,67] 
which could decreases the efficiency of AAV-based Cas9-delivery 
methods [68]. To achieve targeted gene editing, more recently, 
researchers have explored a delivery vehicle composed of gold 
nanoparticles conjugated to DNA and complexed with cationic 
endosomal disruptive polymers (N-(N-(2-aminoethyl)-2-
aminoethyl) aspartamide) (PAsp (DET)) which celled CRISPR–
Gold. CRISPR–Gold can directly deliver Cas9 RNP and donor DNA 
in vivo via local administration and efficiently correct the DNA 
mutation that causes Duchenne muscular dystrophy in mice via 
local injection, with minimal off-target DNA damage [69]. 

After endocytosis, the PAsp (DET) polymer on CRISPR–
Gold triggers endosomal disruption and causes the release 
of CRISPR–Gold into the cytoplasm. Importantly, once in the 
cytoplasm, glutathione releases the DNA from the gold core of 
CRISPR–Gold, which causes the rapid release of Cas9 RNP and 
donor DNA [70]. The challenge of using non-viral vectors for 
CRISPR-mediated genere pair is to deliver Cas9, sg RNA and is 

pair template simultaneously in vivo. Especially the non viral 
delivery of DNA into the nucleus in vivo with high efficiency and 
low to xicity remains difficult.

Recently researchers by combination of clinical suitable 
non-viral and viral delivery systems have succeeded to repair 
genes in vivo efficiently to minimize the side effects. They 
have combined lipid nanoparticle–mediated delivery of Cas9 
mRNA with a deno-associated viruses encoding as gRNA and 
are pair template to induce repair of a disease gene in adult 
animals [71]. This allowed for short-term expression of the Cas9 
nuclease, which provided efficient on-target geno meediting, 
while potentially reducing off-target editing. Genome editing 
through the delivery of CRISPR/Cas9-ribonucleoprotein (Cas9-
RNP) reduces unwanted gene targeting and avoids integrational 
mutagenesis that can occur through gene delivery strategies. 
Direct and efficient delivery of Cas9-RNP into the cytosol 
followed by translocation to the nucleus remains a challenge. 
This approach uses gold nanoparticles to coassemble with 
engineered Cas9 protein and sgRNA into nanoassemblies. 

These vectors deliver protein and nucleic acid efficiently to 
the cytoplasm, with concomitant transport to the nucleus. Using 
this approach, we achieved up to ∼90% delivery efficiency in a 
range of cell types, with subsequent gene editing efficiency up to 
30%. This approach can provides a direct platform for multiple 
in vitro applications and will greatly facilitate research in many 
other areas of rapidly growing genome engineering, including 
spatiotemporal control of gene transcription and imaging 
chromatin dynamics [72].

However, a central challenge to the development of protein-
based therapeutics delivery methods is the inefficiency of 
delivery of protein cargo across the mammalian cell membrane, 
including escape from endosomes and limited in vivo efficacy 
[5,36]. Nucleic acid delivery has benefited greatly from the 
development of liposomal reagents over the past two decades. 
Scientists have previously shown that lipids designed in a 
combinatorial fashion have low immunogenicity and toxicity 
[73-74]. Cationic lipid formulations have enabled DNA and RNA 
transfection to become a routine technique in basic research and 
have even been used in clinical trials [75]. The lipid bilayer of 
the vehicle protects complexed nucleic acids from degradation 
and can prevent neutralization by antibodies [76]. Notably, 
fusion of liposomes with the endosomal membrane during 
endosome maturation can enable the efficient endosomal escape 
of cationic, lipid delivered cargo [77]. Researchers demonstrated 
that common cationic lipid nucleic acid transfection reagents 
can potently deliver proteins that are fused to negatively 
supercharged proteins, that contain natural anionic domains or 
that natively bind to anionic nucleic acids [69]. 

This method have used to deliver diverse protein classes, 
including the Cre tyrosine recombines, TALE transcription 
activators, and Cas9 nucleases, nickases and transcription 
activators to cultured cell lines, stem cell colonies and 
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therapeutically relevant in vivo sites within the mouse inner ear 
[5]. This approach is highly efficient, producing modification 
rates similar to or exceeding those of established nucleic 
acid transfection methods in cell culture, and enabling Cre 
recombinase- and Cas9-mediated genome modification rates of 
up to 90% and 20%, respectively, within the inner ear hair cell 
population of live mice. 

In addition, a similar clinical trial researchers have developed 
a lipid-like nanoparticles delivery system of supercharged Cre 
protein and Cas9: single-guide (sg) RNA complexed with bio 
reducible lipids into cells enables gene recombination and 
genome editing with efficiencies greater than 70% that mediate 
potent protein delivery and genome editing. They have reported 
the synthesis and utilization of a bio reducible lipid nanoparticle 
with negatively supercharged proteins or anionic Cas9: sgRNA 
complexes for genome editing in mammalian cells and in the 
rodent brain. 

The integration of a bio reducible disulfide bond into 
lipids facilitates endosomal escape of nanoparticles containing 
protein cargo, enabling delivery into the nucleus for protein-
based genome editing. The efficient and localized delivery of 
genome-editing proteins to the mouse brain demonstrated here 
may eventually lead to a protein-based approach for correcting 
genetic diseases and neurological disorders. For example, the 
single injection of nanoparticles containing a Cas9: sgRNA 
complex into brain regions rich in dopaminergic neurons could 
enhance dopamine signaling and potentially alleviate some 
symptoms of Parkinson’s disease. One current treatment for 
Parkinson’s disease is deep brain stimulation [36].

Conclusion and Future Perspectives
Genome editing is a group of technologies that give scientists 

the ability to insertion, deletion or replacement of DNA at a 
specific site in the genome of an organism or cell [5]. CRISPR-
Cas9 is a genome-editing tool is used to addition or changing 
of a sequence of specific genes that are associated with human 
diseases and facilitate the development of therapies to correct 
the mutated gene [78-79]. Due to the unparalleled genetic 
specificity, speed and efficiency, CRISPR-Cas has become a 
very hot research field from bench to bedside [8,15]. Thus, 
devising an appropriate carrier to shield the protein and RNA 
from detrimental physiological environment and escort them 
simultaneously to cell nucleus is highly desirable. Advances in 
nanotechnology for synthesis of more cell-friendly structures, 
and in-depth knowledge of gene modification systems at the 
molecular level have encouraged scientists to develop novel 
non-viral gene delivery systems for gene editing [20]. 

In this review, we provided an overview of recent studies 
on CRISPR-Cas non-viral delivery systems by nanotechnology 
in genome engineering, and in particular, stress key toolsets 
and methodologies that will have particularly broad impact 
not only on basic researches such as creating animal models 
and generating cell lines but also on translational research 

like developing therapeutic methods for diseases in the future. 
These studies have established that non-viral protein delivery 
is a viable approach. However, more experiments must be done 
to characterize and optimize the pharmacokinetics, efficacy, and 
safety of these strategies in animal models.
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