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Introduction
Due to tremendous difficulties associated with human 

experiments on auditory system, such as dissection hardness 
due to stiff temporal bone, animal models are the best choice 
for studies on the cochlear physiology. Researchers have shown 
that range of small mammals like cat, chinchilla, guinea pig, 
rat, and mouse, are appropriate options for providing insight 
into the human cochlear physiology. Guinea pigs are one of the 
classic models in auditory research due to extensive similarities 
in hearing range and the cochlea’s structure with the humans. 
Many years ago, Georg von Bekesy described the mechanics of 
cochlea in guinea pigs. On the other hand in 2003, the successful 
efforts in regenerating the hair cells were done in guinea pigs 
[1].

One of the best ways of studying the auditory system and 
specially the cochlea in these animals is recording auditory 
evoked responses. They represent activity within the auditory 
system that is stimulated or evoked by sounds. These recordings 
play a vital role in the identification and diagnosis of auditory 
system pathologies. Electrocochleography (EcochG) is the 
earliest auditory evoked response and its components arise 
from the inner ear and auditory (8th cranial) nerve fibers near 
the inner ear (distal end of 8th nerve). It is considered as the most 
advantageous electrophysiological potentials in documentation 
of cochlear status [2].

Researchers all over the world have investigated the 
cochlear condition in multiple guinea pig’s peripheral auditory  

 
system disorders models via EcochG. This article will review  
the most important measurement parameters as well as clinical 
applications of EcochG in guinea pigs.

The goals of recording EcochG in Guinea pigs
One of the main applications of recording EcochG in guinea 

pigs is better understanding physiology of the auditory system, 
specially the cochlea. EcochG has several beneficial applications 
in cochlear physiology studies including studying the role 
of different channels in mammalian cochlea [3-5], cochlear 
micromechanics such as nonlinearity [6], possible roles of nitric 
oxide [7] and effects of changing perilymphatic K+ in the cochlea 
[8].

Another goal of recording EcochG in guinea pigs is 
determining the underlying mechanism of cochlear diseases, 
such as endolymphatic hydrops [9-12], hyperbilirubinemia 
[13,14], noise-induced hearing loss [15,16], cochlear ischemia 
[17], perilymphatic fistula [18] and hidden hearing loss [19]. 
Studying effects of various drugs on cochlear function is the 
next goal for recording EcochG in guinea pigs. For instance, 
investigating influence of drug-induced ototoxicity on cochlear 
function such as cisplatin [20-24], Quinine [25] and ethyl 
benzene [26], the effect of blood flow promoting drugs [27], 
the effect of anesthetics such as isoflurane [28], histamine and 
its antagonists [29], and the effect of a dopaminergic agonist in 
cochlear physiology and physiopathology [30].
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Stimulus type
Three different types of stimuli have been used in articles for 

recording the EcochG response. Two most dominant stimuli are 
Clicks and Tone burst. Clicks consisted of biphasic alternating 
acoustic pulses (100 µs/phase)[18,28] and 100ms electrical 
pulse [17]. Tone bursts included Trains of 8 [10,20,21,26,28] 
or 10 [9,13,14,29] ms probes, with frequencies of 2-32KHz. The 
probes had cosine-shaped rise and fall times of 4 ms at 0.5 kHz, 
2ms at 1kHz, 1.5ms at 2kHz and 1ms at the higher frequencies 
[9,10,13,14,17, 18,20,21,26,28,29]. In one research with the aim 
of study of CM latency, audiometric tones of 250, 500, 1000, 
2000 and 4000 Hz were used [31].

Electrode locations
Two main electrode arrays can be used in recording EcochG 

parameters in guinea pigs. One of them, which is called “round 
window approach”, is the most widespread method for yielding 
optimal and high quality recordings of the CM, SP, and AP. 
Animals are anesthetized by an intraperitoneal injection of 
anesthetics and are placed in a head holder. Body temperature 
is maintained by a heating pad at 37 °C [16]. Cochlea is exposed 
through a dorsal approach [32]. Once the skin and muscles are 
incised behind the ear, bulla is opened and the round window of 
the cochlea is exposed [33]. An Ag-Cl-electrode is placed at the 
round window niche of the ear. Reference and ground electrodes 
are usually placed on the skull [34,35] or neck musculature [36]. 
In studies which recording the EcochG response is repeated in 
multiple time intervals, the electrode is chronically implanted at 
round window [37].

To measure cochlear responses from either the scala vestibuli 
or the scala tympani, after using appropriate anesthetic agent, 
the animal’s head is guarded dorsally in stereotactic machinery. 
The bony frame of bulla is opened and a 0.2mm hole is made 
into the cochlea. The electrode is made of a Teflon coated Ag-
Cl recording wire which is placed on scala vestibuli or the scala 
tympani [4,9,12,21,38]. 

It is possible also to record the EcochG components by 
placing the active electrode on posterior superior wall of the 
external ear canal near the tympanic membrane, and reference 
and ground electrodes on the vertex and the frontal region 
respectively [11].

Waveform Analysis
There are plenty of procedures for analyzing the latency, 

threshold and amplitude of EcochG components. CAP waveforms 
are analyzed by determining the amplitude, latency and threshold 
of the first and second negative peaks (N1 and N2). The CAPs 
threshold is usually defined as the lowest intensity stimulus 
which evokes a specific magnitude of CAP (0.5mV) [10,26]. There 
is also an alternative method which uses a software algorithm 
and is based on adjusting the level of stimulus until the response 
is just visually noticeable above the noise floor of the recording 
[9]. Most researchers use peak to peak amplitude method for 

analyzing CAP amplitude, as the voltage difference between the 
first negative peak after stimulus onset (N1) and the following 
positive peak [9,10,13]. While the others believe that as the CAP 
is principally superimposed on the SP, the amplitude of the CAP 
(N1) must be measured relative to the SP and not relative to the 
base line of the recording or the next positive peak [20,26,28].

Using the FFT in a window from stimulus onset to 2ms 
after offset [28], applying a first-order Boltzmann equation 
to the CM waveform in the second half of the CM waveform 
[9], or measuring peak-to-peak amplitude in the middle of the 
sinusoidal response [20] are various techniques of assessing CM 
amplitude. Measuring the response a few milliseconds after the 
onset of stimuli is to avoid contamination from CAP [13]. 

SP can be observed as the DC shift in round window potential 
occurring both at the onset and offset of the tone and there are 
arguments for and against using either as the SP measure [39,40]. 
The onset SP could be under-estimated because of the start of the 
negative-going N1 wave of the CAP, whereas the slower slope of 
the offset SP is probably the result of contamination by changes 
in asynchronous neural firing [41]. To overcome these issues, 
SP amplitude is measured as the difference between the pre-
response baseline potential and the DC level from approximately 
5.5-6.5ms following stimulus onset [20], to be concurrent with 
the relatively stable plateau after the CAP [10].

Clinical Applications
Endolymphatic Hydrops (EH): Injecting artificial 

endolymph into scala media in anaesthetized guinea pigs is as 
an acute model of endolymphatic hydrops [42]. With injecting 
volumes up to 1-2µl endolymph, results in fundamental changed 
in EcochG recording parameters. These changes includes an 
increase in CAP threshold specially at low frequencies [43], an 
increase in SP amplitude, and also a change in the asymmetric 
distortion of the CM, resulting from a shift in the nonlinear 
electro-mechanical transduction [44,45]. Researchers have 
suggested a mechanism underlying these changes. That is, 
Reissner’s membrane is swelled into scala vestibuli and the organ 
of Corti is dislocated toward the scala tympani due to increase 
in hydrostatic pressure of the endolymph [46]. These cases 
modify cochlear sensitivity and nonlinear mechano-electrical 
transduction [47]. But when the injected volume increases to 
3µl, a fast and sudden recovery of the changes is observed, which 
is highly similar to the clinical findings observed in Meniere’s 
Disease [9]. Receiving dexamethasone can prevent the reported 
EcochG findings in experimentally-induced endolymphatic 
hydrops [11].

Hyperbilirubinemia
Guinea pigs are considered as worthy animals in modeling 

human cases with hyperbilirubinemia, as their auditory system 
is immature at birth, and this is a good characteristic in matching 
these models with preterm neonates with hyperbilirubinemia 
[13]. To establish the hyperbilirubinemia model, animals 
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received an intraperitoneal injection of bilirubin at 100mg/kg 
[48].

The EcochG shows normal CM, elevated CAP threshold, 
and significantly prolonged peak latencies and duration. These 
results suggest that hyperbilirubinemia in neonatal guinea 
pigs impaired auditory peripheral neuromechanisms that 
targeted mainly the IHC synapses, the myelin sheath of SGNs 
and their fibers, and there is a potential relationship between 
hyperbilirubinemia and auditory neuropathy [13]. Receiving 
taurine, a 2-amino-ethanesulfonic acid, which is an abundant 
sulfur containing amino acid present in the inner ear in 
mammals [49], limits bilirubin-induced neural damage in the 
auditory system, which is revealed by significant attenuation of 
EcochG abnormalities [14].

Noise Induced Hearing Loss (NIHL)
Because of high similarities in hearing range between guinea 

pigs and humans, these small mammals have considered as 
NIHL model in several researches. The pathogenic mechanisms 
of noise-induced cochlear damage could be analyzed via 
EcochG response. The temporary threshold shift as well as 
permanent threshold shift is reflected in EcochG response as 
an increase in CAP Threshed and latency [15], and decrease in 
CM amplitude [16]. The protective effects of antioxidants such 
as N acetylcysteine on noise induced hearing impairment, is 
monitored effectively by investigating the changes in EcochG 
parameters [15].

 Noise exposures that result in reversible changes in 
cochlear neural threshold can cause a reduced neural output 
at supra-threshold acoustic stimuli. This so-called “hidden 
hearing loss” [50], is associated with a selective loss of synapses 
between IHCs and the high threshold and low spontaneous 
rate population of primary afferent neurons [51]. EcochG is the 
best electrophysiological measure for either OHC or IHC and 
auditory nerve output. Persistent depression of the amplitudes 
of both CAP and SP in response to supra-threshold sounds is the 
prominent occurrence which happens in hidden hearing loss, 
which is representative of IHC-afferent synapse as well as hair 
cell malfunction [19].

Perilymphatic fistula (PLF)
Making a crossed incision on the round window membrane 

of guinea pig is a known way for modeling perilymphatic fistula. 
This procedure makes several changes in EcochG components, 
including SP and AP amplitude reduction and latency increase, 
and increases in the SP/AP ratios. The proposed mechanism for 
the changes which are observed by this intervention is related 
to attenuation in the afferent nerve fibers activity, as well as 
anatomic and functional chance in hair cells behavior, specially 
their active cochlear mechanism [18].

Cochlear Ischemia
An experimental local ischemia model of the guinea pig 

cochlea is reported frequently in literature. In this method, 

mechanically compressing anterior inferior cerebellar artery 
results in reduction of cochlear blood flow. The degree of 
induced cochlear ischemia is correlated with the alternations 
in N1 and N2 parameters of EcochG. As CAP of the cochlear 
nerve are sensitive to anoxia or ischemia, lower rate of cochlear 
blood flow is related to shorter survival time of N1 and N2 or 
prolongation of their latencies [17].

Conclusion
Guinea pigs are good animal models for human cochlea 

and they can help test different hypothesis, disease effects on 
cochlea, and treatments for diseases.
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