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Letter to Editor

In 2012, according to the globocan data 14.2 million new 
cases of cancer and 8.2 million cancer associated deaths had been 
reported. Lack of knowledge in cancer biology has major role for 
such disaster which increasing the enthusiasm to come up with 
promising anti-cancer therapy [1]. Discovery of new drug targets 
in cancer cell urgently required to reduce the mortality and to 
increase survival rate. The aberrant expression of Heat shock 
protein (Hsp) 90 has been correlated in all the cancer processes 
such as cell cycle arrest, angiogenesis, and metastasis [2-8]. 
So, identification of Hsp90 function in tumor cell may really be 
helpful which could serve as prognosis biomarker. The Hsp90 
is a major molecular chaperone abundantly expressed in all cell 
types and plays pivotal role in correct folding and functionality 
of client proteins [9,10]. 

Hsp90 is up-regulated in response to cellular stress imposed 
by heat, hypoxia and nutrient deprivation, which is known to 
be commonly associated with the tumor microenvironment 
(TME). Recently, an elevated Hsp90 expression was determined 
in the breast cancer in contrast to non-cancerous tissues 
[10,11]. Similarly, profiles of 4,000 breast cancer patients 
from 23 public gene expression databases have shown an 
increased levels of Hsp90 proteins and poor survival rate of 
patients [12]. In addition, increased Hsp90 expression has also 
been analyzed in other malignancies including lung cancer, 
melanoma, leukemia and colon cancer [2,3]. Several Hsp90 
inhibitors such as geldanamycin derivative 17-allylamino-17-
demethoxygeldanamycin (17AAG) exhibited anti-neoplastic 
efficacy in many preclinical models like gastrointestinal 
carcinomas [6]. 

Even Hsp90 inhibitors have been progressed to phase I/
II clinical trial [13]. Promising result of Hsp90 inhibitors has 
been noticed in TKI (tyrosine kinase inhibitor) resistance , 
EGFR (epidermal growth factor receptor), NSCLC (non-small 
cell lung carcinoma), during clinical trials [14]. Besides the 
synthetic Hsp90 inhibitors, phytochemicals are also proved  
beneficial against several human diseases including diabetes,  

 
cardiovascular, neurodegenerative, and cancers [15-18]. For 
instance, celastrol isolated from the root extract of Trypterigium 
wilfordii (Thunder God Vine) is a pentacyclic triterpenoid and 
well-studied for its multiple pharmacological functions by 
modulating a variety of cellular signalling pathways. Specially, 
celastrol’s anti-cancer potential via Hsp90 inhibition has been 
widely studied. For example, celastrol can regulate many 
transcription factors (TFs) by altering Hsp90/TFs and Hsp 90/
Hop, Hsp90/Cdc37 interaction found in MCF-7, Hep G2, and 
Tamm-Horsfall protein 1 (THP-1) [19]. 

Celastrol binds to C-terminal and N-terminal domain of 
Hsp90 domain and allosterically regulate its chaperone activity 
and disrupt Hsp90-cdc37 involute [20,21]. Celastrol inhibited 
the ATP-binding activity of Hsp90 which has already been known 
as target for anticancer therapy. Further, celastrol arrest U937 
cell in G0/G1 phase in a dose-dependent manner by inhibiting 
Hsp90 governed ATPase activity along with elevation of Hsp70 
levels, reduction in cyclin D1, Cdk4 and Cdk6 levels, and 
disruption of Hsp90/Cdc37/Cdk4 involute [4,5]. Treatment of 
NCI-H460 lung cancer cell line with celastrol showed increased 
radio-sensitivity due to decreased levels of Hsp90 clients such 
as EGFR, ErbB2, and survivin, and increased p53 expression [6]. 

In addition, the partly inhibitory effect of celastrol on HiF-1α 
protein due to suppression of Hsp90 activity was also determined 
[7]. Celastrol also inhibited proteosomes in cervical cancer cells 
(HeLa cells), activates caspases and degraded lung cancer cells 
(Hsp90 in H1650 and H1975) [8,22-32]. Thus, the discussed 
experimental data is showing the role of celastrol in Hsp90 
inhibition and tumor suppression. Therefore, we emphasize 
the utilization of celastrol and Hsp90 mediated approaches in 
further clinical studies by using animal models as well human 
subjects.	
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