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Abstract 

This mathematical observation deals with for the first time regarding the application of Mahgoub transform [ { ( )} ( ) ]vtM F t v F t e dtο
∞ −= ∫ to predict the 

general disposition correlation in pharmacokinetics. A general drug disposition formula is developed for the n linear mammillary compartment 
model along with elimination occurring from every compartment. It is obviously plausible to extract the equation for the central compartment 
with respect to any linear pharmacokinetics. The obtaining mathematical expression predicts the fate of the intravenous input drug in the 
mammillary body. To be sum up, by using this presented equation, most drug disposition kinetics can be solved easily. Thus, it is cleared that this 
mathematical method is obviously helpful to observe the providential information in the computational biology field with the starting point in 
pharmacokinetics..
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Introduction

It is obvious that in pharmacokinetics as well as in 
mathematical biology we often get linear differential equation, 
integral, and Integro differential equations, stochastic equations, 
and others [1-2]. Differential equations often arise in mathematical 
biology such as growth, and decay problems, pharmacokinetic 
problems, and the other computational field. The linear and 
nonlinear pharmacokinetic models in biopharmaceutics are used 
to predict the fate of the input drug to a mammillary body. In linear 
pharmacokinetics, simple first order kinetics is used to describe 
the drug disposition and action. It is also assumed in linear 
pharmacokinetics [3-4] that the pharmacokinetic parameters do 
not change for a drug when different dose or multiple doses are 
applied. So, it is cleared that in linear mammillary pharmacokinetic 
model, the numerical values of the estimated pharmacokinetic 
parameters are inevitable to predict the biological half-life, 
volume of distribution, cmax, tmax. These are analyzed through 
experimental data observed from plasma to estimate the effective 
concentration of the drug to heal diseases of the patient. The 
determined value of biological half-life i.e., elimination half- life 
(t1/2) is a must to predict the dosage regimen (dose and dosing 
intervals) for multiple dosage-regimen drug delivery system [5]. 
It is certified that 97% of the bioavailable drug is eliminated from 
the body after 5t1/2. Therefore, in multiple-

 
dosage regimens drug delivery system, the t1/2 is an inevitable 
factor to avoid drug accumulation in the body which produces 
toxic effect. According to the physicochemical properties of 
a drug, it may distribute in the mammillary body following 
one or, two or, three or multi compartment pharmacokinetic 
model. We developed a mathematical expression for the n 
linear pharmacokinetic model. This observation is helpful to 
predict the biological as well as physicochemical parameters 
of the administered drug through mathematical analysis of the 
experimental data. Besides, mathematics is an inseparable part 
of the pharmacokinetics, computational biology modeling as well. 
As for example, we generally use Laplace transform [6] to solve 
the differential equations in computational biology problems 
and pharmacokinetic as well. We also can use the Mahgoub 
transform mathematical method to solve this problem. Therefore, 
application of the Mahgoub transform [7] obviously assists to 
solve many biology related mathematical problems, precisely 
and correctly. In the present study, we mathematically deduce a 
general drug disposition correlation for the central compartment 
in case of linear multi compartment pharmacokinetic model, from 
which, it is successful that the drug disposition mathematical 
relationship with respect to variations of compartment model 
(one, or two, or three, or n) easily extracted precisely and clearly. 
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It is hardly found the application of Mahgoub transform [7] in 
computational biology. Thus, it initiates the precise application 
of Mahgoub transform in pharmacokinetics and mathematical 
biology as well.

Theory and Discussion

According to mammillary compartment model [8], when 
a drug is administered as an intravenous bolus dose, the entire 

drug is present in central compartment (plasma compartment) 
initially i.e., time is zero. Them it starts to distribute from central 
compartment (plasma compartment) and transports to peripheral 
compartment (Figure 1) for moving to the site of drug action and 
gives pharmacological response. Mammillary compartment model 
may be one compartment model (Figure 2), two Compartment 
model (Figure 3 & 4), three compartment model (Figure 5 & 6), as 
well as multi compartment model (Figure 1) respectively.

Figure 1: The drug disposition for the n linear pharmacokinetic mammillary model.

Figure 2: Open one compartment model.

Figure 3: Plasma concentration (logarithm scale) Vs time curve for open one compartment model.
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Figure 4: Open two compartment model.

Figure 5: Plasma concentration (logarithm scale) Vs time curve for open two compartments model.

Figure 6: Open three compartment model.

Methodology

We have derived the relationships by applying Mahgoub 
Transform and Mahgoub Inverse Transform [9]. Mahgoub 
transform H = H(v) of a function F = F(t) is defined by

{ ( )} ( ) vtM F t v F t e dtο
∞ −= ∫ . The integral is evaluated with respect to t, 

so the limits are substituted. The is left are in terms of v or 1. If 
M{F(t)} = H(v) then F(t) is called the inverse Mahgoub transform 
of H(v) and mathematically it is defined as F(t) = M-1{H(v)}, where 
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M-1 is the inverse Mahgoub transform operator. We have that H(e-

kt) = v/(v+k), H(1) = 1, written in the inverse transform notations, 
M-1[v/(v+k)] = e-kt ; M-1(1) = 1, respectively. If a function F = F(t), 
the transform of its derivative F’ can be expressed in terms of the 
Mahgoub transform of: M{F’(t)} = vH(v) - vF(0).

Proof

According to pharmacokinetic model (Figure 1). 

dc1/dt = - k11c1 + k21c2 + k31c3 + ………… + kn1cn

dc2/dt = k12c1 - k22c2

dc3/dt = k13c1 - k33c3

……………………………

……………………………

dcn/dt = k1nc1 - knncn

here, c1 is concentration of drug in central compartment 
(plasma compartment); c2, c3………….,cn are the concentration of drug 
in peripheral compartments respectively at time t and kij is the 
first order rate constants. Besides, kii is the sum of the exit rate 
constants from compartments i. 

Initial conditions: At time, t is zero

c1(0) = C0, c2(0) = c3(0) = …………= cn(0) = 0

Mahgoub transform for the mathematical model,
vH1(v)-vC0 = - k11H1(v)+k21H2(v)+k31H3(v)+………. + kn1Hn(v)

vH2(v) = k12H1(v) - k22H2(v); Or H2(v) = k12H1(v)/(v+k11)

vH3(v) = k13H1(v) - k33H3(v); Or, H3(v) = k13H1(v)/(v + k22)

……………………………………

…………………………………….

vHn(v) = k1nH1(v) - knnHn(v); Or, Hn(v) = k1nH1(v)/(v + knn)

Therefore,

H1(v) [(v+k11) - k12k21/(v+k22) - k13k31/(v+k33) - ……. - kn1k1n/(v 
+ knn)] = vC0

Or,
H1(v)[(v+k11) (v+k22) (v+k33) …. (v+knn) - k12k21(v+k33) …… 

(v+knn) - k13k31(v+k22) ……. (v+knn) - …………. - k1nkn1(v+k22) (v+k33) 
………] =(v+k22) (v+k33) ………(v+knn) vC0

Or
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Therefore,H(v)=C0×(general disposition equation) 

1.	 Case-1: When the drug is administered intravenously as 
a bolus dose that follows open one compartment model (Figure 
2).

Therefore, H(v) = C0 × (general disposition equation)

2.	 Case 1: When the drug is administered intravenously as 
a bolus dose that follows open one compartment model (Figure 
2)	

Let the intravenous bolus dose of a drug D0 be administered 
to a mammillary body. The initial plasma concentration of the 
drug is C0. The drug is eliminated from the central compartment 
at a rate constant k. Here, 

k11 = k [since, n = 1]

H1(v) = C0v/(v+k),

Or, C(t) = C0e-kt…………(2)

3.	 Case 2: When the intravenous administered drug follows 
open two Compartment model (Figure 4).

If the intravenous injected dose is D0, the drug is distributed 
in the peripheral compartment following open two compartment 
model, the pharmacokinetic rate constants are k12, k21 and drug 
is eliminated from the central compartment at a rate constant k. 
Now, we get from the general mathematical expression (n = 2),

k11 = k+k12, k22 = k21

[(v+k12+k)(v+k21) – k12k21] H1(v) = v(v+k21)C0

Or, [v2+(k+k12+k21)v+kk21] H1(v)= v(v+k21)C0

Now, let k+k12+k21 = a+b, kk21 = ab

So, we get that, H1(v) = v(v+k21)C0 /{(v+a)(v+b)}

Or, H1(v) = C0[v(a-k21) /{(a-b)(v+a)} + v(k21-b)/{(a-b)(v+b)}]

Or, H1(v) = {C0(a-k21)/(a-b)}v/(v+a) + {C0(k21-b)/(a-b)}v/
(v+b)}

By using inverse Mahgoub transform,

C’(t) = Ae-at
 + Be-bt	 (3)

where, A = C0(a-k21)/(a-b); B = C0(k21-b)/(a-b)

k+k12+k21 = a+b, kk21 = ab

4.	 Case 3: When the intravenously injected drug follows 
open three compartment model (Figure 6).

If the intravenous injected dose is D0, the drug is distributed in 
the peripheral compartment following open three compartment 
model, the pharmacokinetic rate constants are k12, k21, k13, k31 
and drug is eliminated from the central compartment at a rate 
constant k. We get from the general equation (n = 3),

Here, 

k11 = k+k12+k13, k22 = k21, k33 = k31

http://dx.doi.org/10.19080/GJPPS.2021.08.555750
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Or, [v3+(k+k12+k21+k13+k31)v2+(kk21+k21k31+kk31+k12k31+k13k21)
v+kk21k31]H1(v)=vC0(v+k21)(v+k 31)

If, k+k12+k21+k13+k31 is p+q+r; kk21+k21k31+kk31+k12k31+k13k21 
is pq+qr+rp, and kk21k31 is pqr

So, we get that, [v3+(p+q+r)v2+(pq+qr+rp)v+pqr]
H1(v)=v(v+k21)(v+k31)C0

Or,H1(v)=v(v+k21)(v+k31)C0/{(v+p)(v+q)(v+r)}

Or, H1(v) = Pv/(v+p) + Qv/(v+q) + Rv/(v+r)

Here,

P=C0(p-k21)(p-k31)/{(p-q)(p-r)}, Q=C0(q-k21)(q-k31)/{(q-p)
(q-r)}, R=C0(r-k21)(r-k31)/{(r-p)(r-q)}

Hence, C”(t) = Pe-pt + Qe-qt + Re-rt…………… (4)

k = pqr(P+Q+R)/(Pqr+Qrp+Rpq)

Calculation and Results

According to pharmacokinetic compartment model solution 
[10-15].

For one compartment open model (Figure 3),

k = 0.173h-1.

For two compartments model (Figure 5),

A = 52; B = 18; a = 1.39; b = 0.135; k = 0.41h-1; k12 = 0.657h-1; 
k21 = 0.458h-1

For three compartments model (Figure 7)

P = 28; Q = 10.5; R=14; p = 0.63; q = 0.46; r = 0.077; k = 0.21h-

1; k12 = 0.01h-1; k21 = 0.52h-1; k13 = 0.14h-1; k31 = 0.18h-1

Figure 7: Plasma concentration (logarithm scale) Vs time curve for open three compartments model.

Conclusion

The mathematical expressions are derived from the general 
drug disposition equation for the central compartment in n 
linear compartment model ([C(t) = C0e-kt], [C’(t) = Ae-at + Be-bt], 
[C”(t) = Pe-pt + Qe-qt + Re-rt]). These mathematical expressions 
can predict the drug concentration in plasma compartment for 
one, two, and three compartment open model, respectively in 
the mammillary body. We can also predict the numerical value 
of pharmacokinetic factors (k12, k21, k, k13, k31) through the 
observation of various mathematical hybrid constants (p, q, r, P, 
Q, R, a, b, A, B) for the respective compartment model. So, it is 
cleared that this mathematical observation is successful to predict 
intuitive information about the bioavailable drug disposition for 
n-compartment mammillary model. Thus, this mathematical 
method initiates a successful point of view to observe the 
providential information in the computational biology field as 
well as in pharmacokinetics.
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