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Abstract 

Deinococcus radiodurans is known for its exceptional tolerance potential against ionizing radiation, an unusual trait not found in any 
other bacterium. Radiation induced DNA damage in Deinococcus radiodurans seems, by all accounts, to be repaired through the involvement of 
enzymatic components i.e., RecA that cleaves and splice together the overlapping chromosomal fragments through homologues recombination. 
This swift mechanism of DNA repairing in these bacterium’s accounts for their survival under extreme conditions and also their utilization in 
bioremediation of heavy metals such as Deinococcus radiodurans assisted biofilms involved in the bioremediation of nickel and cobalt metals. 

Keywords: RecA; Dehydration; Radiations; Cleavage; DNA repair

Introduction

Deinococcus radiodurans is an extremophilic bacterium and 
one of the most radiation-tolerant life forms known [1,2]. It can 
survive under extreme conditions such as low temperatures, 
dehydration, vacuum, and corrosive environment, and 
subsequently is known as a polyextremophile [3]. Deinococcus, 
initially recognized as Micrococcus, are coccoid or rod-shaped 
nonsporulating microbes known for their highly resistant nature 
towards external stimuli [4]. In addition, their enhanced ability 
to fix DNA damage contrasted with other known bacterial species 
[5]. Deinococcus radiodurans can endure several thousand 
times the portion of radiation that would kill any other species 
[6]. Deinococcus radiodurans strain R1 was the first isolated 
bacterium in 1956 from X beam irradiated canned meat [7]. Above 
60 unique species have been isolated from exceptionally different 
conditions, for example, air dust, activated sludge, enacted slime, 
desert soils, arsenic contaminated water, underground aquifers 
or biofilms, radioactive locales etc [8,9]. These species develop at 
temperatures going from 4 to 55°C and have been refocused in an 
unmistakable eubacterial phylogenetic heredity connected with 
the genus Thermus [10]. The neighboring Deinococcus relatives 
are non-pathogenic Trueperaceae, Thermus, Oceanithermus and 
Vulcanithermus [11,12].

However, this has perplexed researcher for a really long time, 
as no organic entity might have been presented to such extreme  

 
radiation under regular conditions. Yet Deinococcus radiodurans 
displayed high resistance from radiation is more than likely a 
result of its way to cope with dehydration [13,14]. With regards 
to tolerating elevated degrees of radiation, the five known 
members from the family Deinococcaceae have no adversaries 
[15]. Every bacterium carries several duplicates of its single 
circular chromosome [16]. Whenever presented to somewhere 
in the range of 10 and 15kilo grays of radiation more than a few 
hours, each duplicate supports around 120 breaks that slice 
through the two strands of its DNA [17]. Contrasted to the fact that 
other microbe’s demise if their chromosomes experience only a 
few such breaks, yet Deinococcus radiodurans can fix its broken 
chromosomes [18].

DNA Repair in Deinococcus radiodurans

Deinococcus radiodurans phenomenal DNA fixing framework 
probably developed to mend DNA damages caused by extreme 
stresses [19]. As most bacteria produces spores to prevent DNA 
damages or in most cases their genomes are irreversibly broken 
underneath steady circumstances while Deinococcus radiodurans 
possess specialized DNA repair system for reconstruction [20].

Repairing Mechanism 

After dehydration, the bacterium needs to remake a duplicate 
of its chromosome from several fragments for which it requires 
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the assistance of RecA enzyme [21] which cleaves and splices 
together overlapping sections of DNA with partially matching 
sequences, thus can reconstruct a chromosome from irregular 
random fragments] through homologous recombination [22,23].

Role of RecA enzyme in repairing mechanism

Resistance from radiation in Deinococcus radiodurans is due 
to the presence of RecA gene [24]. Deleting it or even replacing it 
with the equivalent gene from a bacterium called Shigella flexneri 
did not restore Deinococcus radiodurans ability to fix its DNA 
[25]. Radiation-induced damaged chromosome should be held 
in their precise order for quick repair thus DNA is accumulated 
into bundles, as though the duplicates of its chromosome are 
piled up [26]. The damaged DNA end is recessed in an exceeding 
5′-3′orientation, freeing single abandoned 3′ overhangs which, 
through RecA and RadA interceded strand invasion, prime DNA 
amalgamation on overlapping fragments [27]. DNA synthesis is 
started by politico III and prolonged by politico I and hence the 
newly combined single strands standardize to correlative single 
abandoned expansions framing long twofold abandoned DNA 
intermediates that are constructed into circular chromosomes by 
RecA enzyme mediated homologous recombination [28,29]. 

Heavy metals-bioremediation by Deinococcus 
radiodurans biofilms

Throughout the recent years, atomic energy plants 
decontamination methods likewise generate high quantity of 
radioactive waste thereby raising environmental concerns [30]. 
Deinococcus radiodurans biofilms is accounted for the treatment of 
low active waste material based on the fact that biofilm-mediated 
bioremediation is more effective when contrasted with processes 
interceded by their planktonic partners [31,32]. However, little is 
documented regarding Deinococcus radiodurans biofilm creating 
capacity [33].it was reported that recombinant Deinococcus 
radiodurans holding a plasmid containing gfp and kan”R gene 
induces biofilm forming characteristics to the bacterium [34,35]. 
Deinococcus radiodurans biofilms comprises basically of proteins 
and sugars with modest quantity of extracellular DNA (eDNA) 
[36]. Further their biofilm formation was enhanced at higher 
concentrations of calcium ions [37] and was capable of removing 
metals like Co and Ni from the waste [38]. The presence of Ca 
ions fundamentally improved exopolysaccharide and eDNA (both 
adversely charged) generation in the biofilm framework [39]. This 
demonstrated adsorption could be the significant system behind 
upgraded biofilm interceded expulsion of heavy metals [40].

Conclusion

Thus, Deinococcus radiodurans possess an effective DNA 
repair enzymatic mechanism which accounts for their resistance 
against ionizing radiations.
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