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Abstract

Myo-inositol-1-phosphate synthase (MIPS) is a fundamental enzyme in sugar metabolism pathway, related to inositol in all living system. 
Inositol and its derivative compounds are involved in different signaling pathways and stress tolerance. Plant MIPS are dynamic in signal 
transduction, growth regulation, osmo regulation, abiotic and biotic stress response etc. Present study targets an in silico characterization of 
the MIPS from tea and estimate its phylogenetic status. The physicochemical characters and predicted quaternary structure of the protein 
had been analyzed using different bioinformatics tools. Predictive sub cellular localization is in line with the earlier works. All sequences 
were 80-90% identical among themselves, however MIPS3 isoform from Arabidopsis thaliana had larger similarity with tea MIPS than those 
of MIPS1 and 2. In a number of sites tea MIPS and ATMIPS3 had similar residue and different from other two, whereas in few sites tea had 
unique residue composition as well. More detailed analysis would help to understand the impact of single residue changes at specific site of 
differential function of the protein and its role in basic or stress compatibility of tea plant.
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Introduction

Myo-inositol-1-phosphate synthase (MIPS) is key enzyme 
in the synthesis of inositol related sugar metabolism in all 
living system. Inositol and its derived compounds are involved 
in different signaling pathways like, auxin transport, stress 
tolerance [1], oligosaccharide synthesis [2-4], cell death 
regulation, cell wall biosynthesis [5-9]. In plants, they play active 
role in signal transduction, growth regulation, osmoregulation, 
abiotic and biotic stress response etc [10-12]. Especially, they 
possess salt tolerance ability through protection of cellular 
structures from reactive oxygen species and control cellular 
turgor pressure [13,14]. However crystallographic structure of 
MIPS from higher plants, particularly in angiosperms, is still yet 
to be conclude about the structre-function relationship and its 
variation among different members. Recently in silico methods 
to determine structural and functional characteristics of a gene, 
transcript or protein is being accelerated to avoid of the wet lab 
experimental limitations and it works too [15-19]. Tea plant, 
Camellia sinensis (L.) O. Kuntze, is the potential source of health 
beverage and most popular non-alcoholic drink across the world 
and being an evergreen shrub it grows well in diverse habitat  
and wide range of environment [20].The potential of its existing  

 
stress combating ability in some verities is the point of interest 
of the scientist to understand its mechanism and in progress 
in future cultivars. Present study aims to characterize in silico 
an important stress related protein, MIPS from tea and its 
phylogenetic status. 

Methods

Complete amino acid sequence of Camellia sinensis MIPS 
(Accession No. AJO70149.1) was retrieved through BLASTp 
program [21] at NCBI using a previously reported homolog from 
Porteratia coarctata [10] as query sequence. Camellia sinensis 
MIPS was computationally predicted via homology modelling 
with the python based modeler 9.12 tool [22] after selecting 
the most suitable template at protein data bank (Template 
id- 1LA2, Source - Saccharomyces cerevisiae). Essential ligand 
NAD+ was allowed to bind at each chain of the homotetrameric 
protein. The resultant pdb model was analysed for it’s in silico 
quality checking and physicochemical property estimation. 
Using different bioinformatics tools Ramachandran plot [23], 
Z-score [24], subcellular localization [25], half-life, instability 
and aliphatic index [26] were estimated. 
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For a phylogenetic insight corresponding MIPS sequence 
was compared with the all annotated MIPS variety of Arabidopsis 
thaliana available at TAIR10 [27]. Multiple sequence alignment 
file was observed with the Boxshade server and represented 
accordingly. Multiple sequence alignment among the selected 

varieties was manually examined and a neighbor joining tree 
was drawn with the help of MEGA 7.0 software [28] to know 
about its isoform similarity. Relative divergent time was also 
calculated within the same tool.

Result and Discussion

Figure 1A-1B: Predicted quaternary structure of MIPS from Camellia sinensis (A. Ribbon illustration visualized by Chimera, B. Corresponding 
Ramachandran Plot).

The BLAST returned homolog of MIPS isoform in tea was 
composed of 510 amino acid residues as found in others. 
Such polypeptide chain has an estimated half-life of 30 hours 
(mammalian reticulocytes, in vitro), >20 hours (yeast, in vivo) 
and >10 hours (Escherichia coli, in vivo) with the extinction 
coefficient is 52955M-1cm-1, at 280nm measured in water, 
Absorbance 0.1% (=1g/l)0.942, assuming all pairs of Cys residues 
form cystines and extinction coefficient is 52830M-1cm-1, at 
280nm measured in water, Abs 0.1% (=1g/l) 0.940, assuming 
all Cys residues are reduced. The instability index is computed 
to be 31.59 which indicates the protein is stable. Moreover, 
the aliphatic index 90.92 and Grand average of hydropathicity 
(GRAVY) was calculated as -0.163. Quaternary structure of the 
protein was predicted using ligand modelling in Modeller 9.12 
and visualized in Chimera [29] (Figure 1A). Ramachandran Plot 
analysis (Figure 1B) shown 93.4% of total number of residues 
in favored region and 4.4% in allowed region. Same trend of 
scores was found in earlier study conducted with modelled 
MIPS protein among different group of plants [30]. The z-score 
indicates overall model quality is displayed in a plot that contains 
the z-scores of all experimentally determined protein structures 
from different sources (X-ray, NMR) [24]. In predicted tea MIPS 

the value is calculated as -7.9 which also within the range of 
scores typically found for native proteins of similar size (Figure 
2). According to CELLO prediction the protein was predicted to 
be localized in Periplasmic and Cytoplasmic regions which is 
similar with earlier report of its localization [4,14].

Figure 2: Screenshot of ProSA-web z-score plot.
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Figure 3: Multiple sequence alignment among Arabidopsis thaliana MIPS1, MIPS2,MIPS3 and Camellia sinensis MIPS visualized with the 
help of Boxshadeserver.
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Multiple sequence alignment of Arabidopsis thaliana MIPS 
varieties with the model protein in present study (Figure 3) 
revealed some important findings. All sequences were 80-90% 
identical among themselves, however MIPS3 isoform had larger 
similarity with tea MIPS than other two. In a number of sites 
tea MIPS and ATMIPS3 had similar residue which largely differ 
from other two, whereas in few sites tea had unique residue 
composition too. It is also reflected in the phylogenetic tree 
(Figure 4) where tea MIPS and ATMIPS3 belonged to same clade 
and has common ancestor to the divergent MIPS1 and MIPS2 
isoforms. According to relative divergence time scale MIPS1 
and MIPS2 clade took higher time to evolve than that of MIPS3 
clade and tea MIPS is much primitive than MIPS3 itself. More 
detailed analysis would be of help to understand the impact of 
single residue changes at specific site of differential function of 
the protein and its role in basic or stress induced state of the tea 
plant.

Figure 4: Phylogenetic tree analyzed by Maximum Likelihood 
method using MEGA 7.0.
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