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Introduction
Neuropathic pain (NP) represents one of main causes of 

chronic pain, perhaps trailing only osteoarthritis as a cause [1].  
One of the keys to understand the biology of neuropathic pain is 
to know that´s is caused by an injury in a nervous tissue and that 
nociceptive pathways are involve in the lesion [2]. In the clinical 
practice, the most frequent NP origins are the neurons of dorsal 
root ganglia (DRG) and trigeminal ganglia (TG) in mechanical, 
metabolic and toxic lesions as traumatic injury, herpes zoster, 
diabetes, or cancer chemotherapy, all this kind of pathologies 
promotes functional changes in the initiation and maintenance 
of NP [3,4].

The several changes observed in neuropathic pain condition 
are well represented in two major symptoms, allodynia and 
hyperalgesia. Both symptoms are observed in patients and as 
signs in animal models of chronic pain such as the spinal nerve 
ligation (SNL), consisting in a tight ligation of L5 and L6 spinal 
nerves were Fukuoka et al. [5] described a down-regulation of the 
inhibitory γ-amino butyric acid receptor A (GABAA) in the dorsal 
root ganglia (DRG). In spared nerve injury (SNI) were shown 
an up-regulation of interleukin-1β (IL-1β) in the prefrontal 
cortex of rats [6]. And many other changes can be observe in 
every pre-clinical model of pain which includes up-regulation of 
interleukin-6 (IL-6) [7], neurokinin-1 receptor in the dorsal horn 
[8], down regulation of dopaminergic D1 and D2 receptors in the  
anterior cingulate cortex in a rat model [9] just to mention a few. 
Clearly, this changes in the substances and receptors regulation  
are product of an altered gene expression in the nociceptive  

 
pathways. One of the most recent studied mechanisms that 
explains the pathogenesis and play a crucial role in fine-tuning 
gene expression [10] in the chronic pain is MicroRNAs (miRNAs) 
regulation, that are involve in a wide range of biological 
processes [11]. In this review we will focus in the role and 
neurobiology process through miRNA represents a major key for 
future therapeutics in pain, emphasizing in the NP condition. 

Biology and mechanisms of miRNA

MiRNAs are single-stranded small noncoding RNAs that 
consist of approximately 22 nucleotides. The genomic location 
of miRNAs can be broadly divided into intergenic (between 
genes) or intronic (embedded into a gene) [11].  After the 
transcription of a coding DNA protein is expressed the precursor 
messenger RNA (pre-mRNA) which conformation includes 4 
regions, 5′-untranslated region (UTR), the protein-coding exon, 
the noncoding intron, and the 3′-UTR, that determines the main 
targets of miRNA [12]. The intronic or intron-derived microRNA 
(Id-miRNA) is formed in the in-frame introns and the intergenic 
miRNAs are set between independent transcription units [13], 
both has the capability of degrading messenger-RNA (mRNA) 
and inhibit protein translation so they share not only functional 
but also structural properties. With the only difference that 
intronic miRNA are typically transcribed from the same 
promoter as their host genes (Pol II) and require RNA splicing 
machinery [14-16] while intergenic RNAs genes have their own 
transcription regulatory elements [13]. 
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Figure 1: The linear processing pathway of miRNA. The 
formation of the RNA-induced gene silencing complex (RISC) 
is capable of executing RNA interference (RNAi)-related gene 
silencing, concluding in mRNA deadenylation, translational 
repression and mRNA cleavage.

In Figure 1 is represented the genesis and mechanism by 
which the interaction between miRNA, the target mRNA and the 
RNA-induced gene silencing complex (RISC) suppress the gene 
expression. This process begin with the excision of the primary 
precursor microRNA (pri-miRNA) by the RNA polymerase type-
II (Pol-II) [17], this pri-miRNA at certain concentration can make 
a negative feedback to Pol-II. Then if the pri-miRNA is origin in 

an exon, it will be cropped into the hairpin-shaped pre-miRNAs 
by nuclear RNase III Drosha [18] or by spliceosomal components 
if comes from introns to form a mature precursor miRNA (pre-
miRNA).  This pre-miRNA is exported out of the nucleus to the 
cytoplasm by a member of a Ran-dependent nuclear transport 
receptor family, the exportin-5 (Exp5) [19] where is cleaved to 
the Dicer-like nucleases to form mature miRNA [20]. Finally the 
miRNA is coupled to a   ribo nuclear particle (RNP) to get the 
RISC which is capable of executing RNA interference (RNAi)-
related gene silencing, concluding in the inhibition of the protein 
translation [21].

MiRNA and Pain
The comprehension of the extensive pathways involved in 

the genesis of pain put in evidence that the genetic basis play a 
major role in pain biology [22].  In the very last years the focus 
of researches have been in looking not in an specific target or 
individual receptor but instead in a “major switch” that would 
regulate multiple gene products and orchestrate multiple 
pathways [23] and the recent evidence propose miRNA to be 
that switch. The miRNAs have been implied in inflammation [24] 
process and other pain conditions such as neuropathic pain [25] 
and fibromyalgia [26]. This both common clinical problems are 
usually poorly controlled by the currently available analgesics 
[27], the reason might be the complex and multiple processing 
of nociceptive information in pathological conditions [28]. 
The changes in this processing are the cause of phenomes like 
hyperexcitability that can be induced by a posttranslational 
modulation of ion channels, such as voltage-gated sodium 
channels [29] or long term potentiation (LTP) and disinhibition 
that are product of synaptic modifications [30]. So, this phenomes 
initiated by altered processing in nociceptive pathways respond 
to certain structures like spinal glial cells, especially microglia 
and astrocytes that also plays a major role in pain modulation 
[31] and can be govern by epigenetic mechanisms such as DNA 
methylation, histone modification, and miRNA expressions [32].

Figure 2 : miRNA plays a “major switch” role in many pathways involved in pain development and maintenance including behavioral, 
emotional and cognitional changes.
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This supports the evidence of the critical role of miRNAs 
in pain biology, but not only at molecular, network or synaptic 
level, the miRNAs are implied in behavioral, emotional and 
cognitional changes [33] that affects pain perception [34] 
(Figure 2).  However, the expression of miRNAs in DRG, spinal 
cord, and brain regions such as the limbic system and prefrontal 
cortex can vary from the different causes of pain [4].  The Table 

1, resumes some of the most representative miRNAs expressed 
in certain pathologies and animal model of acute and chronic 
pain, excluding neuropathic pain that will be considered in the 
next section. Figure 2. miRNA plays a “major switch” role in 
many pathways involved in pain development and maintenance 
including behavioral, emotional and cognitional changes. 

Table 1: Characterized Non coding RNAs in various painful conditions.

Model ncRNAs Expression Tissue Reference

Formalin injection miR-124a Down Murine ipsilateral dorsal 
horn neurons Kynast et al. [35]

miR-29a, -98,-99a, -124a, 
-134, -183. Down Rat ipsilateral trigeminal 

ganglion
Suzuki et al. [38] Bai et 

al. [39]

CFA miR-1, -16, 206 Down Rat ipsilateral DRG 
neurons Kusuda et al. [40]

miR-1, -16, 206 Up Rat ipsilateral spinal 
dorsal horn neurons

miR-143 Down Murine ipsilateral DRG 
neurons Tam et al. [41]

miR-219 Down Spinal cord Pan et al. [42]

Osteoarthritis miR-199a, -127-5p Down Human chondrocytes Akhtar et al. [43] Park et 
al. [44]

miR-146a Up Human Synoviocytes Li et al. [45]

Bone cancer miR-1a-3p Up DRG Bali et al. [46]

In the case of acute pain, the intra plantar formalin injection, 
was shown to decrease miR-124a expression in murine 
nociceptive spinal neurons in the ipsilateral horn [35], which 
importance seems to be related to the Methyl CpG binding 
protein 2 (MeCP2) a multifunctional epigenetic regulator that 
is best known for its role in the neurological disorders [36] 
and inflammatory pain [37]. Also, the tongue heat hyperalgesia 
following complete Freund’s adjuvant (CFA) injection shown 
that MeCP2 is involved in regulation of the transient receptor 
potential vanilloid 1 (TRPV1) expression in TG neurons [38], 
supporting the evidence of the down regulation of miRNA-
124a for the expression of MeCP2. Other works revealed by a 
real-time reverse-transcription polymerase chain reaction (RT-
PCR) a significant, but differential, downregulation of mature 
miR-10a, -29a, -98, -99a, -124a, -134, and -183 in the ipsilateral 
mandibular division (V3) of the TG within 4hr after CFA [39], this 
down regulation of miRNA releases the translation inhibition of 
target mRNAs, thus yielding more proteins that may be relevant 
to the development and/or maintenance of inflammatory pain 
as Bai et al. [25] conclude. In 2011 Kusuda et al. [40] found that 
CFA-induced inflammation significantly reduced miRs-1-16 and 
-206 expression in DRG. Conversely, in the spinal dorsal horn all 
three miRNAs monitored were up regulated [40]. Tam et al. [41] 
demonstrate for the first time that miR-143 expression in DRG 
nociceptive neurons is declined in response to inflammation 
[41]. More recently, Pan et al. [42] using a CFA model concluded 
that methylation-mediated epigenetic modification of spinal 
miR-219 expression regulates chronic inflammatory pain by 
targeting calcium/calmodulin-dependent protein kinase II 

γ (CaMKIIγ) which regulates NMDAR signaling and central 
sensitization [42].

In human chondrocytes with IL-1β in vitro stimulation, 
revealed that the treatment with p38- mitogen-activated protein 
kinase (MAPK) inhibitor (SB202190), enhanced the expression 
of miR-199a* which can directly target COX-2 mRNA and reduce 
protein expression levels [43]. Considering the IL-1β as a major 
mediator in chronic pain, described that miR-127-5p regulates 
MMP-13 expression and IL-1β–induced catabolic responses 
in human chondrocytes too [44]. Finally, another miRNA, the 
miR-146a expressed at reduced levels in DRGs and dorsal 
horn of the spinal cords from rats with Osteoarthritis (OA)-
induced pain significantly modulates inflammatory cytokines 
and pain-related molecules (e.g. TNFα, COX-2, iNOS, IL-6, IL8, 
RANTS and ion channel, TRPV1) [45]. In cancer-associated pain, 
another form of chronic pain, miR-1a-3p plays an important role 
attenuating the mechanical hypersensitivity [46], however in 
this pain condition, it might been implied a large list of miRs. 

Role and Expression of miRNAs in Neuropathic pain

The role of miRNA in the regulation of nociception, 
endogenous analgesia and in the circuitries and cognitive, 
emotional and behavioral components involved in pain is 
expected to shed new light on the enigmatic pathophysiology 
of neuropathic pain [24]. Therefore disruption of miRNA 
processing in primary afferent pathways is sufficient to inhibit 
injury-induced long-term development of chronic pain-related 
behaviors, this affirmation is supported in a large evidence of 
investigations we resumed in Table 2.
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Table 2: Characterized Noncoding RNAs in neuropathic pain condition.

Model ncRNAs Expression Tissue Reference

SCI

miR-21 Up Spinal cord Bhalala et al. [50]

Strickland et al. [51]

miR-124a Down Spinal cord Nakanishi et al. [53]

Strickland et al. [52]

Strickland et al. [51]

miR-223 Up Spinal cord Nakanishi et al.  [53]

miR-23b Down Spinal cord Im et al.  [54]

miR-212 Down Spinal cord Wang et al. [55]

miR-449a Up Spinal cord Zhu et al. [56]

SNL

miR-7a, -21 Down/Up DRG

Sakai et al. [58]

Suzuki [59]

miR-96, -182, -183 Down DRG Aldrich et al. [60]

miR-103 Down Spinal Cord Favereaux et al. [61]

miR-183 Down DRG Lin et al. [62]

miR-195 Up Spinal cord Shi et al. [63]

miR-30b Up DRG Shao et al. [64]

Su et al. [65]

CCI

miR-7a, -21 Down/Up DRG Sakai et al. [4], Sakai et 
al.  [38]

miR-539 Down Anterior cingulate cortex Ding et al. [67]

miR-93 Down Spinal cord Yan et al. [68]

miR-183 Down Spinal dorsal horn Xie et al. [69]

miR-145 Down Spinal cord Pang et al. [70]

Bilateral CCI miR-203 Down Spinal cord Li et al. [71]

Axotomy miR-21, -222 Up DRG Zhou, et al. [72]

Nerve crush
miR-21, -142-5p, -221 Up Sciatic nerve Wu et al. [73]

miR-124a Down Sciatic nerve

NcRNA (Noncoding RNA), SCI (Spinal cord injury), SNL (Spinal nerve ligation), CCI (Chronic constriction injury).

To start explaining the role of miRNA in neuropathic pain, 
let`s first mention some of the main animal models that have 
been development in this area. First the spinal cord injury (SCI) 
was proposed by Allen AR in 1911 [47] then in [48], adapted the 
Allen`s method by a briefly laminectomy performed at the T9–
10 thoracic vertebrae level to expose the spinal cord at T10 and 
inducing the SCI by New York University Impactor device [49], 
with this methods it has been possible to correlate the injury 
of the spinal cord with the regulation and expression of miRs 
like miR-21, miR-124a, miR-23b, miR-223, miR-449a and miR-
212 [50-56]. Spinal nerve ligation (SNL), the left L6 transverse 
process is removed to expose the L4 and L5 spinal nerves then 
the L5 spinal nerve is carefully isolated, tightly ligated with 3-0 
silk thread, and transected just distal to the ligature [57], with 
this method it`s has been studied the miRs miR-7a, -21, -96, 
-182, -183, -103, -195 [58-63] and more recently with miARN-
30b [64,65]. The chronic constriction injury (CCI) model was 
proposed by Bennett and Xie in 1988 [66], in this model the right 

sciatic nerve is tied loosely with four ligatures by chromic cat gut 
4-0, the lastly works with this method revealed the expression 
of miR-7a, -21, -539, -93, -183, -145 and -203 [58,59,67-71]. 
The axotomy model consist in a transection of the sciatic nerve 
at a point approximately 1 cm distal to the exit point of spinal 
nerve roots, after Axotomy the expression of miR-21 and miR-
222 increased in DRG [72]. Finally, the Nerve crush model is 
achieved after expose sciatic nerve and crush in the mid-thigh 
for 15sec with a fine hemostat, in the day 4 and 7 post injury 
the three most highly up regulated miRNAs was miR-21, miR-
142-5p, and miR-221 [73]. Now we`ll mention some of the most 
representative and lastly found miR`s involved in neuropathic 
pain development.

The miR-21 is expressed in all the neuropathic pain models, 
[54] demonstrated that miR-21 transcripts are physiologically 
regulated by peripheral nerve injury. Their role appeared to 
be enhance neurite outgrowth from DRG neurons by targeting 
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the Sprouty2 protein (SPRY2) 3′ UTR region in rats after 
axotomy. More recently, [69] studied the role of miR-183 in 
the development of neuropathic pain using the CCI model 
they revealed that miR-183 can suppress AMPA receptors by 
inhibiting the mammalian target of rapamycin (mTOR)/ vascular 
endothelial growth factor (VEGF) pathway, which alleviates the 
mechanical hypersensitivity associated with inflammation and 
neuropathy [74]. Shao et al. [64] evidenced that one of the major 
targets in neuropathic pain, the voltage-gated sodium channel 
Nav1.7 are directly target by miR-30b. The expression of Nav 
1.7 increases in nociceptive neurons during the development of 
inflammatory hyperalgesia, while the knockdown or ablation of 
Nav1.7 expression relieves inflammatory pain and hyperalgesia 
[75]. Finally, [70] study suggested that miR-145 serves an 
important role in the development of neuropathic pain through 
regulating RREB1 expression and the PI3K/AKT signaling 
pathway which serves an important role in vascular endothelial 
growth factor (VEGF)-induced hyperalgesia [76]. 

Future Approaches and Conclusion

The studies reviewed in this article may us consider the 
microRNA`s as potential targets and biomarkers for prediction 
and treatment of several pain conditions. Because of their 
role as master switches in regulation and signaling pathways 
through modifications in nociceptive receptors, ion channels, 
pro-inflammatory molecules, emotional and cognitional 
behaviors associated with pain, the triggered enthusiasm for 
miRNAs as promising therapeutic targets is still active. However, 
challenges with respect to the use of miRNA-based therapeutics 
in humans remain to be further explored [77]. When we can 
fully understand the role of miRNAs in pain mechanisms, it will 
be possible to maximize miRNAs potency while minimizing off 
target toxicity and immunogenicity to provide great benefit for 
clinical diagnostic and therapeutic applications.
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