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Introduction

Innate immunity is the first response in the human body 
against pathogenic, or disease-causing stimuli. These stimuli 
can vary, and include viruses, perturbed normal tissue, and 
dying cancer cells. It is an important response, as it prevents 
continued proliferation of these pathogens and maintains a 
state of homeostasis within the body. It can also accommodate 
the development of a specific induced immune response during 
the first, or primary infection and, can therefore, establish 
inflammatory conditions. This induced response is specific 
because of the many different expressions that the cell surface 
gives off in the form of pattern recognition receptors, which can 
identify many of the molecules of life, such as, polysaccharides, 
glycoproteins, glycolipids, and nucleic acids [1]. 

The definition of innate immunity has altered over time. 
In earlier years, it was believed that innate immune response 
was premeditated. However, recent studies have shown that 
innate immunity is actually a specific response that results from 
damage or pathogen-associated molecular patterns (DAMP/
PAMPs) [2]. In the initial phase, the innate immune system is 
able to coordinate inflammatory responses through cells of 
the hematopoietic compartment (neutrophils, macrophages 
and monocytes) and create conditions suitable for microbial 
clearance. In the second phase, other cells like dendritic cells  

 
are able to process antigens and present them on the surface 
in concert with major histocompatibility complex (MHC) to 
prime T-cells. This also allows the body to more effectively fight 
against infections of the same or similar type in the future. This 
“memory” is dependent on two specific types of cells: natural 
killer (NK) cells and macrophages. These cells provide crucial 
protection against reinfection in the immune system [3]. This 
“memory” found in innate immune systems is present in both 
vertebrate and invertebrate organisms.

Cytokines in Innate Immune Response
Cytokines are possibly the most indispensable component of 

the innate immune response. Cytokines are secreted by cells of 
the immune system and facilitate interaction between different 
types of cells. There are many different types of cytokines, and 
they are classified mainly by their biological functions. The 
main types of cytokines are: interferons (INFs), interleukins 
(ILs), transforming growth factors (TGFs), and tumor necrosis 
factors (TNFs) [4]. Interferons are the most commonly found 
type of cytokine in vertebrates and mammals and are crucial to 
mediate antiviral defense. To date, there have been three types of 
interferons discovered in vertebrates, and specifically mammals: 
Types 1, 2 and 3. Type 1 IFNs typically facilitate the antiviral 
response against microbial infection-causing pathogens. Type 
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2 IFNs also facilitate antiviral response, but at the same time, 
vitalize the process of phagocytosis and inhibit cell growth. Type 
3 IFNs have been demonstrated to be strikingly similar in function 
to Type 1 IFNs [5,6]. Interleukins are a type of cytokines that also 
facilitate inflammatory responses in the immune system and help 
to stimulate cell growth [7]. Transforming growth factors (TGFs) 
regulate cell growth, help stimulate the growth of oocyte cells 
(which are found in the ovum), repair wounds inflicted upon the 
body, participate in immunosuppression, or reduce the activity 
of the immune system when naturally required [8]. Finally, 
tumor necrosis factors (TNFs) help to stimulate macrophages 
as they participate in the biological process of phagocytosis [9].

STING (Stimulator of interferon genes) as a DNA 
sensor

STING has been identified as a major signaling molecule 
that plays a pivotal role in innate immune response by inducing 
the production of interferons. STING is a cytoplasmic pattern 
recognition receptor activated by nucleic acid ligands known as 
cyclic dinucleotides (CDNs). These CDNs are generated by the 
DNA sensor cyclic GMP-AMP synthase (cGAS) using cytosolic 
DNA from extrinsic pathogens or endogenous aberrant self-DNA 
[10-12]. In case of tumors, it is probable that dying tumor cells 
are sources of dsDNA in the cytoplasm. In addition to CDN’s, 
STING can directly sense DNA and this dual sensing has been 
uncoupled with specific mutations in STING [10]. Activation of 
STING induces its binding with a kinase TBK1 (TANK-binding 
kinase 1) and further phosphorylation and dimerization of IRF3 
(Interferon regulatory factor 3). IRF3 and another transcription 
factor that is activated by STING (STAT6) translocate to nucleus 
and bind to interferon promoters leading to production of type 
I interferons. 

It is suggested that STING pathway is the main innate 
immune sensing pathway within tumor microenvironment 
and the main cell types in the tumor microenvironment that 
produce type I interferons are the dendritic cells [13,14]. In 

addition to the activation of STING pathway in response to 
tumor-derived DNA, dendritic cells prime T-cells by presenting 
tumor- associated antigens. These effects then create a signaling 
pathway, which allows T-cells, a main feature of the active 
immune response, to neutralize tumor cells [15,16]. Some tumor 
cells are able to “disguise” themselves to the innate immune 
response by upregulating immune checkpoints, or by having 
a lack of innate immune response within the tumor. A recent 
study reported that STING is epigenetically silenced in some 
cancers [17]. Additionally, oncoproteins from viruses such as 
human papillomavirus can bind and block activation of STING 
[18]. Thus, a cytosolic DNA sensing pathway is important for 
activation of innate immune response. In recent years, there has 
been considerable interest in the field of immune-oncology as 
well as an increase in the number of immunotherapies available 
[19,20].

ENPP1(Ectonucleotide Pyrophosphatase/Phosphodi-
esterase-1) And Its Role in Innate Immunity

ENPP1 is a membrane bound enzyme that is an important 
regulator of extracellular inorganic pyrophosphate in osteo-
blasts and chondrocytes [21]. It is essential for prevention of soft 
tissue mineralization and ENPP1 deficient mice can have abnor-
mal gait and progressive calcification in ectopic sites [22]. ENPP1 
is responsible for hydrolysis of extracellular nucleotide triphos-
phates to produce inorganic pyrophosphates (PPi) [23]. Recent 
investigations have shown that ENPP1 plays a much larger role 
in limiting the innate immune response of the human body. It has 
been discovered that STING pathway is regulated by ENPP1[24]. 
ENPP1 was identified as the major hydrolase for the most potent 
endogenous CDN ligand for STING: 2’3’-cGAMP [25]. Important-
ly, it was demonstrated that denaturation of 2’3’-cGAMP can con-
trol the activation of the STING pathway [26]. Phosphothioate 
analogs of 2’3’-cGAMP resistant to ENPP1- mediated hydrolysis 
potently activate STING [25] and mediate anti-tumor responses. 
These analogs have now entered clinical trials as intra-tumoral 
injections in various advance cancers (Figure 1).

Figure 1: Role of ENPP1 in the STING pathway. Tumor cell DNA released from dead cells and pathogen DNA is processed by cGAS 
(cyclic GMP-AMP synthase) to generate 2’3’-cGAMP dinucleotide. Binding of 2’3’-cGAMP to STING leads to activation of STING and 
subsequent recruitment of TBK1 (TANK-binding kinase 1). This leads to phosphorylation and nuclear translocation of IRF3, where IRF3 
drives transcription of type I interferons. ENPP1 metabolizes 2’3’-cGAMP and inactivates the STING pathway.
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In another study, it was shown that Mycobacterium tuber-
culosis evades host immune response through a bacterial phos-
phodiesterase (CdnP) which inactivates host 2’3’-cGAMP. Loss 
of ENPP1 attenuated Mycobacterium tuberculosis infection, as 
did the inhibition of CdnP, the phosphodiesterase of Mycobac-
terium tuberculosis [27] More recently, inactivation of porcine 
ENPP1 was shown to attenuate pseudorabies infection through 
an interferon-β dependent response [28]. Many viruses gener-
ate antagonist proteins that can inactivate cGAS-STING pathway 
[29]. ENPP1 is differentially expressed in immune cells with low 
levels in NK cells, DC and macrophages and high levels in neutro-
phils [30]. ENPP1 is also expressed in a small subset of B-cells 
and studies suggest that these cells may be involved in modula-
tion of T-cell activity [31]. Interestingly, ENPP1 expression was 
reported to be elevated in the M2 subtype of macrophages that 
are known to play a role in tumor promotion [28,32,33]. Other 
studies have indicated that expression of ENPP1 is increased in 
astrocytic tumors, breast cancers, and head and neck cancers 
[34-36]. Thus, inhibition of ENPP1 in humans may provide op-
portunities for treatment of cancers and pathogenic infections.

Challenges in Development of Inhibitors of ENPP1 
for Human Use

Given the various functions for ENPP1 in regulating host 
immune responses, there is interest in development of ENPP1 
inhibitors for human use. These inhibitors may have promising 
activity in human cancers and infectious pathologies. There are 
various practical challenges in development of these inhibitors. 
ENPP1 is a type II transmembrane glycoprotein that belongs to 
a family of ectonucleotide pyrophosphatase/phosphodiesterase 
(Enpp) family and consist of seven distinct proteins with distinct 
functions [37]. Thus, any inhibitor strategy will have to consider 
development challenges for specificity. In the published crystal 
structure of mouse ENPP1, there are important structural 
differences between ENPP2 and ENPP1. The N-terminal 
somatomedin-like (SMB) domains of ENPP1 do not interact with 
catalytic domains unlike those in ENPP2 [38,39]. ENPP1 appears 
to lack a hydrophobic pocket in contrast to ENPP2 although 
interdomain interactions are preserved [37-40]. Despite these 
challenges, our group and others have described novel selective 
and orally bioavailable inhibitors of ENPP1 [41-45].

Fundamental effects of ENPP1 inhibition on host immune 
response are still being determined. It is not known, for 
instance, if ENPP1 deficiency in mouse models impairs 
anti-tumor growth. Thus, optimal duration and intensity of 
ENPP1 inhibition is still being developed. This is important 
since systemic administration of these inhibitors can cause 
unwanted side effects due to excessive release of interferons. 
Interestingly, ENPP1 knockout mice are viable, thus pointing to 
possible avenues for development of such inhibitors. Prolonged 
administration of ENPP1 inhibitors may lead to unwanted effects 
on bony tissues and ectopic calcifications although this has been 
disputed in various studies in literature [46]. This is because 
bone and cartilage effects may not be entirely mediated by 

ENPP1. In other studies, oral administration of pyrophosphate 
can attenuate the connective tissue calcifications mediated by 
ENPP1 mutations in mouse models [47].

Conclusion
As hyper-activation of STING pathway may lead to production 

of abnormally high levels of proinflammatory cytokines, it is 
necessary to develop therapeutics that target STING pathway 
indirectly. Inhibition of ENPP1 activity is one approach that may 
result in optimal activation of STING pathway, enough to have 
anti-tumor effects, and minimize unintended consequences. 
Given the role of ENPP1 in immune modulation and tumor 
promotion, there is an increased interest to develop novel 
therapies based on inhibition of the ENPP1 activity and this will 
emerge as an interesting area in the coming years.
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