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Introduction

Malaria
Malaria is a mosquito-borne infectious disease of humans and 

other animals caused by protists (a type of microorganism) of the 
genus Plasmodium. It remains one of the most important disease 
of public health concern in countries where the transmission of 
the disease occurs regularly [1]. Malaria is one of the major pub-
lic health problems in tropical and subtropical countries, Malaria 
parasites are transmitted from infected host to susceptible host 
by the bite of an infected Anopheles mosquito. As per World the 
Health Organization’s (WHO) Malaria Report 2016, nearly 148-
304 million people suffered from acute malaria globally and 
0.235-0.639 million among the infected died. Approximately half 
of the world’s population is at risk of being infected by malaria 
[2]. In 2015, there were 212 million reported cases of malaria and 
430,000 malaria deaths worldwide [3]. Over 90% of those deaths 
occurred in Sub-Saharan Africa. Efforts is being made towards  

 
scaling up malaria prevention methods, via greater access to diag 
nostic testing and treatment, increased use of insecticide-treated 
bed nets and indoor residual spraying in malaria endemic regions.    

Nanoparticles emerge as the future of drug delivery technolo-
gy as they might be future crucial diagnostic and therapeutic tools 
[5]. Additionally, one of the major benefits of nanotechnology is 
the targeted drug delivery at the site of the disease by passive tar-
geting of drugs to the site of action or by selective active targeting 
of the active pharmaceutic agent [6-7]. Drug delivery nanomediat-
ed systems are based on biocompatible nanocarriers, such as gold 
nanoparticles, carbon nanotubes, nanovesicles, micellar systems 
and dendrimers [8]. Based on the identified potential of nanopar-
ticles, they have emerged as a promising delivery system for effi-
cient transport and release of antimalarials into diverse cell types 
as a covalent or non-covalent conjugate to incorporate multiple 
therapeutic drugs or biomacromolecules [5].
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Conventional therapy and drug resistance
There are five major parasite species that cause human malar-

ia: Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale 
Plasmodium Knowlesi and Plasmodium malariae [4]. These para-
sites pose serious illness, but P. falciparum is the most life-threat-
ening of them all. There have been several controls and prevention 
approaches taken to manage this disease, such as the use of an-
timalarials. However, the currently used antimalarial drugs have 
not been found to be effective due to their toxicity, cost and drug 
resistance [9]. As a result, these factors have resulted in malaria 
treatment failure [10]. Other factors that contribute to malaria 
treatment failure include misdiagnosis, poor patient compliance, 
poor drug quality and incorrect dosing. Due to the aforementioned 
factors, there is an urgent need to develop drug delivery systems 
that will be able to reduce the toxicity of the drugs, improve pa-
tient compliance and hopefully overcome drug resistance, which 
is common to the currently used antimalarials [11].

At present, quinine related drugs, Artemisinin derivatives, 
anti-folates derivatives and new class of combination drugs are 
extensively used to treat malaria. These drugs are used in com-
bination for better malaria treatment. Quinine related drugs are 
highly potent in treating malaria. Chloroquine (CQ) has been used 
for treatment of malaria for over eight decades due to its excellent 
pharmacokinetic and pharmacological advantages over all other 
antimalarial drugs. CQ is known for its fast action in blood para-
site stages, low toxicity, good bioavailability from oral dosage, wa-
ter solubility, high volume of distribution in the body and lower 
cost [12] Primaquine (PQ) is a very toxic drug used in the pro-
phylaxis against all types of malaria. Nevertheless, quinine relat-
ed drugs are effective against malaria P. falciparum is developing 
resistance against these classes of drugs. ACT (Artemisinin-based 
combination therapy) is the frontline treatment against malar-
ia. Artemisinin and its derivatives have the ability to kill a broad 
range of asexual parasite stages at safe concentrations [12].

In 2005-06, ACTs were deployed as first-line treatment in sev-
eral endemic countries in Africa, as a result, the malaria cases and 
deaths were reported to be declining [3]. However, according to 
WHO via the Global malaria programme (2018), there have been 
some reports of delayed parasite clearance during routine Ther-
apeutic Efficacy studies of ACTs conducted in Africa. There was 
also report of high failure rates of ACT along the Thai-Cambodi-
an border [13]. This might be due to the development of possible 
artemisinin resistance. Moreover, artemisinin derivatives were 
reported to show dose, time and route dependent neurotoxicity 
in laboratory animals [14]. Nevertheless, no report is available re-
garding the toxicity of artemisinin and its derivatives in human. 
The observed discrepancy between animal and human studies 
may be due to different routes of administrations [14].

The existing treatment for malaria is taken orally and has 
three main problems which are:

1.	 Most antimalarial drugs are broken down in the stom-
ach

2.	 The drugs have strong side effects

3.	 The medicine stays in the body for only a short time. 
These issues have resulted in malaria treatments that were 
not particularly effective.

Drug delivery and nanotechnology in medicine
Drug delivery refers to approaches, formulations, technolo-

gies, and system for transporting a pharmaceutical compound in 
the body as needed to safely achieve its desired therapeutic effect 
[14]. Nanotechnology involves the study of the control of matter 
on an atomic and molecular scale. This molecular level investiga-
tion is at a range usually below 100nm. In simple terms, a nano-
meter is one billionth of a meter and the properties of materials at 
this atomic or subatomic level differ significantly from properties 
of the same materials at larger sizes. Although, the initial prop-
erties of nanomaterials studied were for its physical, mechanical, 
electrical, magnetic, chemical and biological applications, recent-
ly, attention has been geared towards its pharmaceutical applica-
tion, especially in the area of drug delivery [14].

Nanocarriers with prolong blood circulation time i.e. stealth 
nanocarriers have been used for delivering antimalarial drugs in 
order to increase the resident time in the human body and to in-
crease the probability of drug molecules to interact with infected 
red blood cells and parasites [6]. In addition to this, nano-drug 
delivery systems (NDDs) provide protection to unstable drugs, 
cell adhesion properties, and ability to conjugate specific ligands 
on their surface. NDDs such as mesoporous silica liposomes, 
polymeric nanoparticles, solid lipid nanoparticles, dendrimers, 
nanoemulsions are extensively studied for antimalarial drug de-
livery. However, in this review we will look at efficiency of meso-
porous silica and liposomes in as nanocarriers.

Nanocarriers For Antimalarial Drug

Mesoporous silica as nanocarriers nanocarriers for 
antimalarial drugs

The utilization of mesoporous silica nanoparticles (MSNs) as 
a strategy in drug design application came as a better alternative 
nanocarrier due to its inherent noble properties of large surface 
area, tuneable pore size or volume, high thermal property, nontox-
icity, biocompatibility which enables it cargo favorably large drug 
proportions to the target cells in a controlled kinetic release [15]. 
Beck et al. [16] were the first to introduce MSN popularly referred 
to as MCM-41 in 1992. But not until 2001, that Vallet-Regí et al, 
[17] introduced MCM-41 for the first time as a drug delivery sys-
tem, and efforts has been devoted to the design of versatile MSNs 
for treating diverse pathologies. Even though very few studies 
have been carried out using MSNs as a system for drug delivery in 
malaria treatment Amolegbe et al. [18] designed MSNs that pro-
vided a groundbreaking and very promising approach in the treat-
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ment of malaria. Construction of nano-vector materials, capable of 
encapsulating antimalarial drugs and delivering them to Plasmo-
dium-infected red blood cells (pRBC) with high specificity efficacy 
and at an affordable cost to the rural man in sub-Sahara Africa is of 
paramount importance. Urban et al. [19] reported the use of poly 
(amidoamines) (PAAs) drug conjugates for the delivery of chlo-
roquine (CQ) and primaquine (PQ) to P. falciparium 3D7 in vitro 
with IC50 values of 14.6nM and 2.5µM respectively when the most 
effective PAA (having an intrinsic ant plasmodial activity, IC50 of 
13.7µM was used and to P. yoelii17XL in vivo with 96.5% reduction 
in parasitemia at the least dose when the most effective PAA was 
also used. Movellan et al. [20] constructed nano dendritic polymer 
drug conjugates for CQ and PQ carriage to Plasmodium-infected 
red blood cell (pRBC) with a clear improvement in the vitro IC50 
for CQ and PQ which were 4.0nM and 1.1µM respectively.

Herein the research done by Amolegbe et al. [18] made use of 
mesoporous Silica in the form of MCM-41 encapsulated quinine 
(MCM-41⊃QN)(1), 3-phenylpropyl silane functionalized MCM-41 
loaded QN (pMCM-41⊃QN) (2), MCM-41 encapsulated Atersuna-
te (MCM-41⊃ATS) [3] and 3-aminopropyl silane functionalized 
MCM-41 contained ATS (aMCM-41⊃ATS)[4] which were synthe-
sized, well characterized and were screened in vitro for their ac-
tivity against P. falciparium W2 strain, cytotoxicity against BGM 
cells and in vivo for their activity against Plasmodium berghei The 
result shows

Antiplasmodial activity and cytotocity of the nanodrugs 
of MSN

The anti-plasmodial activity and cytotoxicity for the nano-
drugs: MCM-41⊃ QN (1) pMCM-41⊃ QN (2), MCM-41⊃ ATS (3) 
and aMCM-41⊃ ATS (4) show that with the exception of MCM-41 
encapsulated ATS, the other three nanoparticle encapsulated an-
timalarial drugs were active against P. falciparum W2 strain and 
were not toxic against Bufalo, and Green Monkey Kidney (BGM) 
cells.

Antimalarial activity of nano-silica encapsulated antima-
larial drugs

suppressive test using mice revealed that ‘1’ was the most 
active nanodrug (ED50:< 0.0625mg/kg) against P. berghei NK65, 
exhibiting higher chemo suppression than quinine at a dose two 
hundred and forty times less than that of QN and also increased 
the mean survival time (MST) compared to the untreated control. 
‘3’ was the second most active against P. berghei NK65 (ED50: 
0.113mg/kg) and also increased the MST of the infected mice 
compared to the untreated control. However, it exhibited lower 
MST in infected mice compared to ATS. The other two nano-drugs 
were also active; causing more than 50% inhibition of parasite 
growth. However, as others, the nano-drugs caused the P. berghei 
NK65-infected mice to have lower MST than those administered 
standard drugs, though increasing MST of the infected mice com-
pared to the untreated control [20].

The results indicated 1 and 3 as the most active nanodrugs, 
although the latter was inactive in vitro this may be due to some 
modifications undergone in vivo of the nanoparticle used for the 
synthesis of 3 which enhanced the release of the drug from the 
nanoparticle thereby making the nanodrug to become active. This 
suggests that MCM-41 was the most effective drug delivery sys-
tem among the drug delivery systems examined ‘1’ exhibited an 
ED 50 of <0.0625mg/kg body weight, which was lower than ‘2’. 
The results suggest that MCM-41 was able to maintain a steady 
release of the drug over a long period of time, thereby increas-
ing the half-life of the drug in the blood. This is also evident from 
the in vitro dissolution experiment carried out. In like manner, ‘3’ 
exhibited lower ED50 than aMCM-41 encapsulated ATS, still em-
phasizing the fact that MCM-41 is effective at steady release of its 
drug compared to other nanoparticles. This also suggests that the 
framework of MCM-41 was effective in allowing the nanodrug to 
get adsorbed to the infected red blood cells [21].

MCM-41 encapsulated QN (1) with a controlled release was 
the most active of all the four nanodrugs evaluated, causing higher 
inhibition of parasite growth than the parent drug and exhibiting 
a mean survival time favorably compares with that of parent drug. 
The results, therefore, suggest that ‘1’ is more effective drug de-
livery system compared to other nanoparticles used in this study. 
Thus, its application as a drug delivery system for the antimalar-
ials makes it a suitable candidate for the next generation active 
nano drugs malariotherapy products [12].

Moreover, MCM-41 enhanced a dose of 0.0625mg/kg body 
weight of QN (which is 240-fold less than 15mg/kg body weight 
of the unencapsulated QN used in this study) to cause a higher in-
hibition of parasite growth compared to the unencapsulated drug. 
In the same vein, MCM-41 enhanced a dose of 0.25mg/kg body 
weight of ATS (which is 20-fold less than the 5mg/kg body weight 
of the unencapsulated ATS used in this study) and interestingly 
still to cause a higher inhibition of parasite growth compared to 
the parent drug. This result, however, concur’s with the high in-
tracellular uptake property of MSN [15]. The magnitude of the re-
duction in the amount of drug needed to cause higher inhibition 
in parasite growth than the unencapsulated drugs was higher in 
MCM-41, suggesting that MCM-41 further enhanced its effective-
ness in drug delivery.

The nanodrugs increased the mean survival time of the infect-
ed mice compared to that of the untreated control. However, the 
reduced mean survival time observed in mice treated with var-
ious mesoporous silica nanoparticles loaded with antimalarials, 
except MCM-41 encapsulated quinine, compared to those treated 
with parent drugs suggests some level of toxicity. The nanodrugs 
were not toxic against Bufalo Green Monkey Kidney cell line in vi-
tro (MLD50:>1000). Thus, the cause of the reduced MST observed 
in vivo is a subject for further studies. The results corroborate pre-
vious reports that unfunctionalized nanoparticles (e.g. MCM-41) 
are well tolerated [22]. MCM-41 encapsulated QN had comparable 
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mean survival time to that of QN, even exhibiting higher mean sur-
vival time than quinine at some doses which were much less than 
that of unencapsulated quinine.

Challenges of Mesoporous Silica as drug delivery system 

Some MSNs design proffer cytotoxicity in the course of deliv-
ering treatments as shown in the study by Amolegbe et al. [18] 
where MCM-41⊃ATS (Artesunate encapsulated with MCM-41 
MSN) shows cytotoxicity in kidney cell lines. This result further 
validates the work done by Di Pasqua Anthony, et al. [23] which 
measures the cytotoxicity of MCM-41, two of its functionalized 
analogs, AP-T (grafted aminopropyl group) and MP-T (mercap-
topropyl groups) and Spherical silica nanoparticles (SiO(2)) to-
wards human neoroblastoma cells and the results shows that on 
a particle basis, MCM-41 is the most cytotoxic material among the 
mesoporous silica material used. In some other studies the use 
of Mesoporous Silica (MS-Ap-PAMP adjuvants) in tumor immuno-
therapy indicates maximum in vitro immunogenic activity [24]. So 
therefore, mesoporous material like the MCM-41⊃ATS indicates 
some form of cytotoxity in its delivery of antimalarial drug and 
also other therapy using mesoporous materials indicated immu-
nogenic activities [23].

Liposomes as nanocarrier for antimalarial drugs
According to Farouk et al. [25] Liposomes are small and ar-

tificial spherical shape vesicles that can be created from natural 
non-toxic phospholipids and cholesterol. Due to their size and 
hydrophilic and hydrophobic characters in addition to biocom-
patibility, the liposomes are considered as promising systems for 
drugs delivery [27]. Generally, liposomes are definite as spheri-
cal vesicles with particle sizes ranging from 30 nm to several mi-
crometers. They consist of one or more lipid bilayers surrounding 
aqueous units, where the polar head groups are oriented in the 
pathway of the interior and exterior aqueous phases [27]. Lipo-
somes are extensively used as carriers for numerous molecules 
in pharmaceutical and cosmetic industries. Additionally, food and 
farming industries have extensively studied the uses of liposomes 
encapsulation to grow delivery system that can entrap unstable 
compound such as antioxidant, antimicrobials, flavors and bio-
active elements and as well shield their functionality [27]. Lipo-
somes can trap both hydrophilic and hydrophobic compound, 
avoid decomposition of the entrapped combinations, and release 
the entrapped at designated targets [28]. Because of their biode-
gradability, low toxicity biocompatibility and aptitude to trap both 
hydrophilic and lipophilic drugs [29] and simplify site specific 
drug delivery to tumor tissue Hofheinz et al. [30] liposomes have 
increased rate both as an investigational system and commercial-
ly as a drug-delivery system. Many studies have been conducted 
on liposomes with the aim decreasing drug toxicity and targeting 
specific cells [29] Liposomes are synthetic structures that consist-
ed of several hundred nanometers in diameter containing one or 
several phospholipid bilayers enclosing an aqueous core [31].

The concept of utilizing liposomes as vehicle for drug deliv-

ery system was introduced in 1970s and more recently the use of 
liposomes nanocarriers has been extended to immunological ad-
juvants and as delivery vehicles for vaccine especially to specific 
target cells [32]. Both lipophilic and hydrophilic particles can be 
incorporated into liposomes and delivered to target sites within 
the host organism. Hydrophilic particles including peptides, pro-
teins and nucleic acid can be entrapped within the inner aqueous 
phase while lipophilic drugs such as adjuvants and lipopeptides 
can be incorporated onto the outer phospholipid layer. Liposomes 
are immunologically advantageous due to their targeting and up-
take by professional antigen presenting cells, and additionally 
antigens, adjuvants and antibodies can be attached to the outer 
surface of liposomes to facilitate delivery into infected cells [32]. 
Optimal combinations of antigens, antibodies and adjuvants give 
liposomes plasticity and allow the opportunity for optimization 
of different drug regimens. Liposomes have shown significant ef-
fect as nanocarrier for the prophylaxis and also for the treatment 
of malaria and as well as for vaccine delivery for the prevention 
of malaria [33]. Currently, effective therapy for malaria is limited 
due to toxic drug side effects and the development of resistance 
to current drug regimens. Encapsulation of therapeutic agents 
within liposomes can favorably alter the dose and distribution of 
drugs within the body, which may significantly reduce unwanted 
toxic side effects, increase treatment efficacy and reduce the risk 
of drug resistance [34]. Presently, malaria vaccine strategies suf-
fer from the problem of resistance to recombinant antigens and as 
well the need for frequent re-boosting. The use of live-attenuated 
parasites is limited mainly because high doses of Plasmodium are 
needed and because a clinically appropriate route for inoculation 
has not been found [35].

Current therapeutic administration strategies release free 
drugs into the blood and offer little specificity regarding infected 
cells [25]. Early studies have indicated that the liposomalization 
of the antimalarial agent chloroquine increases its maximal toler-
able dose and its efficiency and activity against murine malarial 
infections greater than just chloroquine alone [25] Moreover, the 
ability to increase the doses of chloroquine per injection after li-
posome encapsulation allowed successful treatment of infection 
with chloroquine resistant P. berghei which could be cured by a 
seven-day course with the maximum tolerable dose of free chloro-
quine [36]. More recently, antibody coated liposomes loaded with 
antimalarial drugs such as primaquine and chloroquine complete-
ly arrested human infecting parasite, P. falciparum growth in vitro 
and cleared infections [37]. This success was attributed to dual 
therapeutic and prophylactic effect achieved with the use of lipo-
some vesicles targets to both infected and non-infected erythro-
cytes [37].

 Resistance to current antimalarial therapy is attributed to 
a large genetic diversity of Plasmodium strain, specific mutation 
in P. falciparum chloroquine transporter gene and multi drug re-
sistance genes in P. falciparum [39]. Liposomes circumvent drug 
resistant malaria because they are targeted for intracellular de-
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livery which bypasses chloroquine transponder and pass through 
cell membrane by alternative mechanisms such as membrane fu-
sion or entrapment of chloroquine in pH-sensitive liposomes [36]. 
Directing liposomes to parasite-infected erythrocytes is another 
strategy that would allow for selective drug distribution and al-
low for exposure of lethal doses directly to the pathogens [39]. Li-
gands conjugated to the surface of liposomes can be used to target 
and specifically bind Plasmodium infected cell [19]. Because the 
blood-stage of Plasmodium infection is responsible for all symp-
toms and pathologies of malaria, Plasmodium -infected erythro-
cytes are the main antimalarial therapeutic target. The targeting 
of liposomes to erythrocytes using heparin and monoclonal anti-
bodies to erythrocyte surface proteins have been studied in vitro 
and have shown promise towards targeted drug delivery. Marques 
et al. Encapsulated primaquine in heparin-coated liposomes, this 
formulation was demonstrated to have antimalarial activity and 
specific binding affinity for Plasmodium-infected erythrocytes in 
vitro via heparin targeting of heparin-binding proteins in eryth-
rocyte membranes. Antibody-mediated erythrocytes targeting 
using liposomes are another promising strategy for targeted drug 
release. Recently, drugs carried by liposomes were shown to be 
specifically targeted in vitro to P. falciparum infected erythrocytes 
relative to noninfected erythrocytes likely by docking to infect-
ed cell surfaces to facilitate membrane fusion [40]. This demon-
strates the feasibility of constructing a carrier able to completely 
discriminate infected from non-infected erythrocytes.

Challenges of liposomes assisted drug delivery for malar-
ia

In most cases liposomal formulations are nontoxic, but cer-
tain formulations such as the cationic formulations tend to be cy-
totoxic. This is especially true when liposomal doses are very high 
[19]. The sterilisation of liposomes is a complicated conundrum, 
as liposomes are sensitive to high temperatures, as well as certain 
methods of radiation. Sterilising with chemicals is not a viable op-
tion either, as it may affect the stability of the liposomes. The only 
method for creating sterile liposomes is by filtering the liposomes 
through a 0.22μm membrane filter after production. This method 
is only suitable if the liposomes are smaller than 0.2μm in diame-
ter. This method does not remove viruses [41]. Another option is 
filtering the initial solutions through 0.45μm regenerated cellu-
lose filters and glass fibre filters before starting production, there-
after the entire production process must be done under aseptic 
conditions [42]. For a pharmaceutical product to be viable for the 
market, it requires the product to be stable in some form or anoth-
er for at least a year and a half to two years. To achieve this with 
liposomes is very difficult if the liposomes remain in suspension. 
Other methods may be used to increase the shelf life of liposomes, 
such as freeze-drying after production [41-45]. Two factors play 
a major role in the stability of liposomes namely, chemical and 
physical degradation. The chemical degradation of liposomes is 
attributed to oxidation and hydrolysis. Physical degradation is 
most often attributed to the difference in the packing density of 

the lipids in the bilayer structure. Physical degradation is also a 
huge factor when formulations are freezedried. When products 
are freeze-dried a so called cryoprotector must be added to en-
sure the product is stable when reconstituted [25].

Conclusion
Malaria is a disease that been affecting the people from 

tropical and subtropical countries. But, the recent development 
in nanomedicine is opening up new possibilities and is providing 
better and effective solutions in treating this complex disease 
(malaria). In this review, the use of Mesoporous Silica and 
Liposomes as Nanocarriers nanocarriers for antimalarial drugs 
has shown to provide more efficient and fast delivery of the anti-
malarial therapy to the targeted cells without the complications 
accompanied by other routes of delivery thereby making them 
safer. However, use of liposomes has presented some challenges 
in maintaining it sterility and stability for use and also the fact 
it possesses very short shelf life when in suspension thereby 
requires additional processes and efforts in making it viable 
for the market. In other hand the Four groups of Mesoporous 
Silica used: MCM-41⊃QN (1) pMCM-41⊃ QN (2), MCM-41⊃ ATS 
(3) and aMCM-41⊃ATS (4) showed better efficacy however the 
encapsulation strategy of MCM-41⊃QN (1) stands very useful and 
effective in delivering the drug to the target cells compared to 
other delivery of the mesopourous systems majorly because of the 
lower cytotoxicity accompanying its functions and therefore, this 
encapsulated drug may be considered for rational drug design.
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