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Introduction
The global concern about alternative water reuse techniques 

are increasing continuously as heavy industries such as 
petrochemicals and agricultures grows bigger each year. Those 
organic pollutants present in wastewaters which are not 
treatable by conventional treatment methods, are considered 
to be treated by stronger and more modern techniques. The 
presence of these organic compounds in water poses serious 
threat to public health since most of them are toxic, endocrine 
disrupting, mutagenic or potentially carcinogenic to humans, 
animals and aquatic life in general. Wastewaters containing these 
compounds are known to be high in chemical oxygen demand 
(COD) and low in biological oxygen demand (BOD). These non-
biodegradable molecules enter the environment predominantly 
through industrial activities.

Traditional wastewater management methods using 
biological microorganisms (biodegradation) and/or physico-
chemical processes (flocculation, chlorination, ozonation and 
misc.), subsequently followed by filtration and adsorption-based 
separations are able to treat a majority of anthropogenically-
polluted water sources. However, no single method described 
above is efficient enough to produce water with legally- and 
practically-acceptable levels of refractory toxic chemicals. 
Physico-chemical techniques like flocculation, adsorption and 
reverse osmosis require additional post-treatments to prevent 
secondary disposal and contamination [1]. Wet air oxidation 
of effluents with >100 g/L of chemical oxygen demand (COD) 
generates high concentrations of toxic byproducts like dioxins 
and furans [2]. Direct oxidation processes are widely used to 
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degrade bio-refractory substances. High degradation efficiencies 
are possible with direct oxidation techniques. However, pollution 
load, process limitations and operating conditions are the key 
factors to be considered during the selection of most appropriate 
oxidation process for a particular compound degradation. Apart 
from high degradation efficiency, direct oxidation processes 
demand specified operating conditions to degrade the target 
compounds and this will increase the operation cost of the 
process [3-7].

Table 1: Advanced oxidation processes classification.

Type of process Example

Heterogeneous

Using energy TiO2/ZnO/CdS + UV

Without energy

Catalytic ozonation  
Photocatalytic ozonation                     

Heterogeneous photocatalysis             
H2O2 + nano-zero valent iron             

H2O2 + immobilized nano-zero 
valent iron

Homogeneous

Using energy

Ultraviolet 
radiation

UV/H2O2+Fe2+ 

O3+UV   

O3+UV+H2O2

Ultrasound 
energy US/H2O2+Fe2+  US/O3

Electrical 
energy

Electro-Fenton    
Electrochemical oxidation    

 Anodic oxidation

Ultrasound/ 
Electrical 

energy
Sono-electro-Fenton

Ultraviolet/ 
Electrical 

energy
Photo-electro-Fenton

Ultrasound/ 
Ultraviolet 

energy
Sono-photo-Fenton

Without energy

Alkaline 
medium O3 in alkaline medium

Combined 
systems O3/H2O2

Catalyzed 
systems H2O2/catalyst

Advanced Oxidation Processes are those techniques which 
have the capabilities of utilizing the high reactivity of hydroxyl 
radicals in driving oxidation processes. The different types of 
AOPs are considered for wastewater pollution abatement [8]. 
The hydroxyl radicals are extraordinarily reactive species, which 
attack the most part of organic molecules with rate constants 
usually in the order of 106-109M-1 s-1 [9]. Hydroxyl radical is 
the second strongest oxidant preceded by the fluorine, and 
it reacts 106-1012 times faster than ozone depending on the 
substrate to be degraded [3,10]. Advanced oxidation processes 
can be classified either as homogeneous or heterogeneous. 

Homogeneous processes can be further subdivided into 
processes that use energy and processes that do not use energy. 
A goal of the wastewater purification by means of AOP methods 
is the mineralization of the contaminants to carbon dioxide, 
water and inorganic or, at least, at their transformation into 
harmless products. Obviously the methods based on chemical 
destruction, when properly developed, give complete solution 
to the problem of pollutant abatement differently from those in 
which only a phase separation is realized with the consequent 
problem of the final disposal [3] (Table 1).

Fenton Chemistry
The oxidation processes utilizing activation of H2O2 by iron 

salts are referred to as Fenton’s reagent. This reaction allows the 
generation of hydroxyl radicals as shown in reaction (1) [11-13]:

Fe2++H2 O2→Fe3++OH-+OH. (Chain initiation) k1=70M-1s-1      [14] 
-------(1)

The generation of the radicals involves a complex reaction 
sequence in an aqueous solution:

OH.+Fe2+→OH+Fe3+(chain termination)k2=3.2×108M-1s-1       [14] 
--------(2)

Fe3+ produced can react with H2O2 and hydroperoxyl radical 
in the so-called Fenton-like reaction, which leads to regenerating 
Fe2+ (reactions (3) and (5)). Fe2+ regeneration is also possible 
by reacting with organic radical intermediates (reaction (7)) 
[10,11]:

Fe3++H2O2→Fe2++ HO2.+H+     k3 = 0.001-0.01 M-1s-1	 [15]-----
-----  (3)

HO2.+Fe2+→HO2+Fe3    k4 = 1.3×106M-1s-1      at pH=3	 [16]-----
-----  (4)

Fe3++ HO2.→Fe2++O2+H+     k5 =1.2×106 M-1s-1at pH=3        [16]----
------   (5)

OH.+H2O2⟶H2O+HO2.   k6=3.3×107 M-1s-1        [17] --------    (6)

Fe3++ R.  →Fe2++ R+   --------  (7)

If the concentrations of reactants are not limiting, the 
organics can be completely detoxified by full conversion to CO2, 
water and in the case of substituted organics, inorganic salts if 
the treatment is continued.

Reaction (1) which is the overall Fenton chemistry is 
simplified [18] by accounting for the dissociation water:

2Fe2++ H2O2+2H+  ⟶ 2Fe3++2H2O----- (8)

This equation indicates the need for an acidic environment 
to produce the maximum amount of hydroxyl radicals. Previous 
Fenton studies have shown that acidic pH levels near 3 are 
usually optimum for Fenton oxidations [19]. At low pH levels 
and in the presence of organic substrates, hydroxyl radicals can 
abstract a hydrogen atom, initiating a radical chain oxidation 
[11,18-20].
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RH+ OH.  ⟶ H2O+ R. (Chain propagation) --------- (9)

R.+ H2O2  ⟶ROH+OH.---------(10)

R.+ O2⟶ROO.------- (11)

The sequence of reactions (1), (2), (9) and (7) constitute the 
present accepted scheme for the Fenton’s reagent chain. The 
foregoing analysis indicates that hydrogen peroxide may act 
both as radical generator as in reaction (1) and as scavenger as 
in reaction (6) [11].

In the absence or presence of any organic molecule to be 
oxidized, the decomposition of hydrogen peroxide to molecular 
oxygen and water occurs according to reaction (10). This reaction 
leads to exploitation of bulk oxidant and thus an unnecessary 
increase on treatment cost [3,21]

s2H2O2  ⟶ O2+2H2O------ (12)

Fenton oxidation has been extensively applied to the 
treatment of diverse wastewaters from olive oil industries [22], 
textile industries [23], paper pulp factories [24], cork processing 
facilities [25] and winery industries [26], as well as effluents 
from refinery and fuel terminals [27], sludge waste [28], landfill 
leachate [29,30] and contaminated soils [31-33].

The main reasons for the huge popularity and widespread 
applicability of Fenton oxidation processes are [1]:

1.	 	 The high efficiency of mineralization enables the 
transformation of organic pollutants into non-toxic CO2,

2.	 	 Owing to the rapid reaction between iron and H2O2, 
the activation of H2O2 and the subsequent generation of 
hydroxyl radicals are completed in the shortest reaction 
time among all other AOPs [1,34],

3.	 	 Oxidizing radicals are generated at ambient pressure 
and temperature, which avoids the requirement of 
complicated reactor facilities,

4.	 	 The use of cheap, moderately reactive, and easy-to-
handle reagents (iron and H2O2) makes the Fenton 
process cost effective and practically viable,

5.	 	 The simple and flexible nature enables easy 
implementation as a stand-alone or hybrid system 
and also facilitates easy integration in existing water 
treatment processes like coagulation, filtration and 
biological oxidation [1,35,36].

However, two main drawbacks were identified. The first is 
related to the wastage of oxidants due to the radical scavenging 
effect of hydrogen peroxide as in reaction (6) and its self-
decomposition as in reaction (12). The second refers to the 
continuous loss of iron ions and the formation of solid sludge. 
Several economic and environmental drawbacks have been 
reported to occur with Fenton sludge [3,37]. Thus, technologies 
allowing an efficient use of H2O2 have to be studied. Furthermore, 

an attempt has to be made for the recovery of iron ions and their 
subsequent recycle and reuse. Although Fenton’s reagent was 
discovered about 100 years ago, its application as an oxidizing 
process for destroying toxic organics was not applied until the 
late 1960’s [3,38]. 

Homogeneous vs. Heterogeneous Systems
Iron species exist in the same phase with reactants in 

homogeneous Fenton reaction. Therefore, there is no mass 
transfer limitation. A large number of studies have been 
conducted successfully using iron salts in Fenton processes 
for treatment of various wastewaters. Despite significant 
mineralization efficiency of homogeneous Fenton processes 
under optimum condition, a number of limitations are associated 
with these processes. The main drawback is the formation of 
large quantity of ferric-hydroxide sludge at pH values higher 
than 4.0 [39], that poses in adverse effects on the environment 
and waste disposal issues. In addition, regeneration of catalyst is 
not only impracticable but also large amount of catalytic metal 
is misplaced in the sludge. These limitations can be overcome 
to some extent by application of heterogeneous catalysts. This 
category of catalysts has gained growing concern in Fenton 
process as its effectiveness is maintained for wider range of pH. 
Iron is stabilized within the catalyst structure in heterogeneous 
catalysis and can effectively activate degradation of recalcitrant 
compounds without generation of ferric hydroxide precipitation. 
Nevertheless, heterogeneous catalysis is of slower oxidation rate 
compared to homogeneous reaction [40] due to the presence of 
a small fraction of iron on the catalyst surface. On this basis, 
recent investigations have focused on the development of new 
hetero-catalysts with larger surface area and higher activities in 
degradation processes [3,39]. Three possible mechanisms have 
been proposed for hetero-catalysts action in Fenton processes:

1.	 	 Iron leaching to the reaction solution and activating 
hydrogen peroxide through homogeneous pathway 
and/or 

2.	 	 Decomposition of H2O2 to hydroxyl radicals by binding 
of H2O2 with iron species on the surface of catalyst and 
its decomposition to hydroxyl radicals or 

3.	 	 Chemisorption of probe molecule on the catalyst 
surface [39-42].

Numerous heterogeneous catalysts have been used in Fenton 
reactions. Amongst them are iron minerals that are relatively 
less priced and can be separated magnetically from the reaction 
medium [43]. Details related to the application of different iron 
oxides in Fenton reactions and their degradation efficacy have 
been reviewed previously by the authors of this paper [34,39]. 
In addition, application of ferrites, clays, zeolite, alumina, fly ash 
based catalysts and other types of heterogeneous catalyst have 
been reviewed in detailed by other researchers [43-46]. Finally it 
should be pointed out that heterogeneous Fenton-like treatment 
of highly polluted wastewaters with low transparency is not 
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practically efficient because of inner filtration effects related to 
large number of absorbing molecules and inhibition of photons 
absorption by iron cations [39,47].

Influence of Operational Condition
Amongst various factors that influence the effectiveness 

of degradation process in the Fenton oxidation system, the 
concentrations of the contaminant and Fenton reagents, pH 
and temperature of the reaction medium are found to be the 
most significant factors. In this context, the optimization of the 
reaction is very important to achieve better treatment results.

Structure of contaminants

Figure 1: Effect of degradation time on degradation of TOC 
for 4-chlorophenol, hydroquinone, 4-chloroaniline and phenol 
(experimental conditions: [substrate]0=1×10−3M-l,[H2O2]0 = 
1×10−2 M−1, [Fe2+]0= 2.5×10−4 M−1) [51].

Figure 2: Effect of degradation time on degradation of TOC for 
cyclohexanol, cyclohexanone, 4-nitroaniline and 3-nitroaniline 
(experimental conditions: [substrate]0 = 1×10−3 M−1,[H2O2]0 = 
1×10−2M−1, [Fe2+]0 = 2.5 × 10−4 M−1) [51].

Kinetic degradation of aromatic pollutants with the Fenton 
system was reported earlier [48-50]; but less attention was given 
to the mineralization of these substances. The degradation of 
alicyclic compounds was given little attention since most of the 
water pollutants with a low biodegradability have an aromatic 
structure. The influence of the structure of several organic 
pollutants on the way they are mineralized by hydroxyl radicals 
has been studied [11,51]. As shown in (Figures 1 & 2), all of the 
aromatic substances studied by authors were strongly degraded 
after several hours, while the organic carbon of cyclohexanol 
and cyclohexanone was hardly attacked. In alicyclic compounds 
the attack of the electrophilic hydroxyl radicals cannot occur at 
conjugated C=C double bonds in contrast to aromatic compounds 
where ring opening and further degradation take place. As shown 

in (Figures 3 & 4), H2O2 decrease during reaction was in good 
correlation with the TOC (total organic carbon) degradation. 
For all aromatic substances studied degradation curves became 
linear after the first 30 min, until H2O2 was completely exhausted. 
During degradation of cyclohexanol and cyclohexanone only 
a slight decrease of the oxidant could be observed [11]. The 
continued destruction of nitroaniline after exhaustion of H2O2, 
as shown in (Figure 2) was attributed to photo-Fenton reactions 
[51]

Figure 3: Effect of degradation time on degradation of 
H2O2 for 4-chlorophenol, hydroquinone, 4-chloroaniline 
and phenol (experimental conditions: [substrate]0=1× 
10−3M−1, [H2O2]0 = 1×10−2M−1, [Fe2+]=2.5 × 10−4 M−1) [51].

Figure 4: Effect of degradation time on degradation of 
H2O2 for cyclohexanol, cyclohexanone, 4-nitroaniline and 
3-nitroaniline (experimental conditions: [substrate]0 = 1 × 
10−3M−1, [H2O2]0 = 1 × 10−2M−1, [Fe2+]0 = 2.5 × 10−4M−1) [51].

Probe Molecules 
The contaminant concentration is one of the important 

factors in Fenton process dealing with photons. Literature survey 
has clearly revealed that the increase in concentration of probe 
molecule has negative effects on its removal efficiency due to the 
inner filtration effect related to high concentrations of absorbing 
molecules [52]. Consequently, it needs longer irradiation time 
and/or further magnification in Fenton reagents to supply 
adequate hydroxyl radicals into the reaction [39,53].

Operating pH
The main disadvantage often associated with homogeneous 

Fenton system is its pH dependency to achieve the best 
degradation efficiency [54]. This is a challenging issue especially 
in natural waters or highly buffered wastewaters. Fenton 
process is strongly dependent on the solution pH mainly due to 
iron and hydrogen peroxide speciation factors. The optimum pH 
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for the Fenton reaction was found to be around 3, regardless of 
the target substrate [55-58]. The activity of Fenton reagent is 
reduced at higher pH due to the presence of relatively inactive 
iron oxohydroxides and formation of ferric hydroxide precipitate 
[59]. In this situation, less hydroxyl radicals are generated due 
to the presence of less free iron ions. The oxidation potential 
of hydroxyl radicals decreases with increasing pH. In addition, 
auto-decomposition (reaction (12)) of hydrogen peroxide is 
accelerated at high pH [3,60]. In general higher-than-optimum 
pH values disturb Fenton efficiency through:

1.	 	 Prevention of H2O2 decomposition to generate hydroxyl 
radicals due to the deficiency of H+ ions [18], 

2.	 	 Accelerated decomposition of H2O2 to water and oxygen 
at pH values above 5, 

3.	 	 Decline in oxidation potential of hydroxyl radicals (E0 
= 2.8-1.95 V at pH 0-14) [61], 

4.	 	 Possible generation of more selective ferric species 
other than hydroxyl radicals at pH above 5 [62] and 

5.	 	 Development of ferric oxyhydroxide (Fe-OOH) at pH 
above 4 that reduces degradation rate [63]. At pH values 
above 4, iron precipitates as ferric hydroxide [39,55,63-
65].

At pH below 3, decrease in degradation efficiency was 
observed [66]. At very low pH values, iron complex species 
[Fe(H2O)6]2+ exists, which reacts more slowly with hydrogen 
peroxide than other species [67]. In addition, the peroxide gets 
solvated in the presence of high concentration of H+ ions to 
form stable oxonium ion [H3O2]+. Oxonium ions make hydrogen 
peroxide more stable and reduce its reactivity with ferrous 
ions [3,66,68]. Therefore, the efficiency of the Fenton process 
to degrade organic compounds is reduced both at high and low 
pH. Thus an adequate control of pH would increase process 
efficiency. It should be noted that the type of buffer solution used 
also has effect on the degradation process [69]. The acetic acid/
acetate buffer gives maximum oxidation efficiency whereas least 
is observed with phosphate and sulfate buffers [69]. This can be 
attributed to the formation of stable Fe3+ complexes that are 
formed under those conditions [3,70].

Ferrous ion concentration
The Fenton reaction begins by producing hydroxyl radicals 

from the reaction between ferrous ion and hydrogen peroxide 
(reaction (1)). When the Fenton reaction in the absence of 
organics is initiated under [Fe2+]0/[H2O2]0≥2, the consumption 
ratio of ferrous ion to hydrogen peroxide becomes about 2, and 
radical chain reactions are quickly terminated. This is because 
the hydroxyl radicals produced as a result of reaction (1) mainly 
react with the ferrous ion and not hydrogen peroxide. This 
explanation is supported by the fact that the reaction between 
hydroxyl radicals and the ferrous ion is ten times faster than that 
between hydroxyl radicals and hydrogen peroxide (k2 = 3.2 × 
108M−1 s−1and k6 = 3.3 × 107M−1 s−1)[11,17].

Usually the rate of degradation increases with an increase 
in the concentration of ferrous ion [71]. However, the extent of 
increase is sometimes observed to be marginal above a certain 
concentration of ferrous ion [55,72,73]. Also, an enormous 
increase in the ferrous ions will lead to an increase in the 
unutilized quantity of iron salts, which will contribute to an 
increase in the total dissolved solids content of the effluent 
stream and this is not permitted. Thus, laboratory scale studies 
are required to establish the optimum loading of ferrous ions to 
mineralize the organics [3].

Hydrogen peroxide concentration
Concentration of hydrogen peroxide plays a crucial role in 

deciding the overall efficiency of the degradation process [3]. It 
has been observed that the degradation percent of the pollutant 
increases with an increase in the dosage of hydrogen peroxide 
[56,71-73]. However, care should be taken while selecting the 
operating oxidant dosage. The unused portion of hydrogen 
peroxide during the Fenton process contributes to COD [71] and 
hence excess amount is not recommended. Also, the presence 
of hydrogen peroxide is harmful to many of the organisms [74] 
and will affect the overall degradation efficiency significantly, 
where Fenton oxidation is used as a pretreatment to biological 
oxidation [3].

With hydrogen peroxide concentrations at an average 
[Fe2+]0/[H2O2]0 ratio =1,regardless of the presence of organics, 
hydrogen peroxide rapidly converts all ferrous to ferric ions 
via reaction (1). In the absence of RH, hydrogen peroxide 
decomposes slowly through ferric ion induced radical chain 
reactions (reaction (3)) just after the rapid consumption of 
hydrogen peroxide. The reduction of the ferric ion (reactions 
(3)) is significantly lower than reaction (1) and is the rate-
determining step. To have a continued decrease of hydrogen 
peroxide, ferrous ion must be formed by the reduction of ferric 
ion. Then, the Fenton reaction can be characterized by two 
specific systems, i.e. the ferrous system and the ferric system, 
which depend on the oxidation stage of the iron initially added 
or the major oxidation state of the iron present. The ferrous 
system refers to the case where the primary reaction, which 
produces hydroxyl radical, is the reaction between the ferrous 
ion and hydrogen peroxide (reaction (1))[11,12].

Initial concentration of pollutant
In general, lower initial concentration of the pollutants 

is favored [68,69], but the negative effects of treating large 
quantities of effluent need to be analyzed before the dilution 
ratio is fixed. For real industrial wastewaters, dilution is essential 
before any degradation is effected by Fenton oxidation [3].

Temperature
A large number of studies related to Fenton-based 

methods have been carried out at room temperature [39,75-
77]. This is because thermal decomposition of H2O2 occurs at 
temperatures above 50°C [78-84]. In addition, due to the fact 
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that H2O2 decomposition is accelerated at basic pH values, the 
increment in temperature brings about a shift in optimum pH 
towards acidic values [39,75,80]. In fact, a study [71] reported 
an optimum temperature of 30°C, whereas another study [55] 
reported that the degradation efficiency is unaffected even when 
the temperature is increased from 10 to 40°C. If the reaction 
temperature is expected to rise beyond 40°C due to exothermic 
nature, cooling is recommended. The efficient utilization of 
hydrogen peroxide decreases due to accelerated decomposition 
of hydrogen peroxide into water and oxygen [3,81]. However, 
based on the Arrhenius theory of rate constants in relation to 
temperature, it is expected that increase in temperature leads 
to higher generation of hydroxyl radicals from the increase in 
concentration of produced Fe(OH)2+ [82]. In another study, 
complete mineralization of diclofenac, a phenyl containing drug 
compound was attained when the experiments were carried 
out at 50°C [83]. However, the authors did not report any data 
regarding degradation efficiency at ambient temperature [39].

Chemical coagulation
Chemical coagulation step is recommended after Fenton 

oxidation to keep the concentration of the soluble iron with the 
specified limits [71]. A study [72] has demonstrated the efficacy 
of chemical coagulation in controlling the concentration of total 
dissolved solids below the specified limits [3].

Composition of Reaction Medium
Besides main operational conditions, there are several other 

factors that affect the efficiency of Fenton and Fenton-based 
oxidations. Amongst them is the composition of the treated 
water. Inorganic ions such as carbonates, bicarbonates, chlorides, 
fluoride, bromide, phosphate and sulfate may be present in 
water or generated via degradation process. Some of these ions 
may alter oxidation rate of Fenton reactions [39]. The extent of 
the change in reaction kinetic depends on the type of ion and its 
concentration in the solution through one or combination of the 
following effects: 

•	 	 formation of Fe(III) complexes and lessening of the 
abundance and activity of iron species, 

•	 	 generation of by-products that are in some cases more 
toxic and recalcitrant than parent compounds, 

•	 	 hydroxyl radical scavenging and generation of less 
reactive radicals than hydroxyl radicals, 

•	 	 reaction of generated radicals with hydrogen peroxide 
that decreases its availability in solution, 

•	 	 competition with organic compounds for active sites 
on hetero-catalysts, and 

•	 	 Effect on ferrous ion recovery [39,84-91].

Chelating Agents
Despite the fact that Fenton processes provide acceptable 

scores for contaminant degradation in acidic solutions, a large 

number of recent works have employed several inorganic or 
organic ligands such as EDTA, EDDS, oxalate, NTA, carboxymethyl 
b-cyclodextrin (CMCD), tartrate, citrate and succinate, to 
improve its efficiency and to increase the oxidation rate of probe 
molecules [39,91-94]. The positive effects of these ions can be 
attributed to the following aspects: 

•	 	 having higher quantum yield of hydroxyl radical 
formation compared to other Fe (III) complexes, 

•	 	 promoting the reduction of ferric ion to ferrous ion and 
accordingly, regeneration of higher amounts of hydroxyl 
radical [39,95,96],

•	 	 promoting H2O2 activation and hydroxyl radical 
generation, 

•	 	 enhancing the solubilization of lipophilic organic 
pollutants, and

•	 	 Enhancing iron dissolution at neutral pH via 
photochemical reduction of Fe3+ to Fe2+ [39,91,93].

Energy-Consuming Fenton-Based Reactions
Photo-Fenton processes

A combination of hydrogen peroxide and UV radiation with 
Fe2+ or Fe3+ oxalate ion (photo-Fenton (PF) process) produces 
more hydroxyl radicals compared to conventional Fenton method 
or photolysis and in turn increases the rate of degradation of 
organic pollutants [97-104]. Fenton reaction accumulates Fe3+ 
ions in the system and the reaction does not proceed once all 
Fe2+ ions are consumed. The photochemical regeneration of 
ferrous ions (Fe2+) by photo-reduction (reaction (13)) of ferric 
ions (Fe3+) occurs in photo- Fenton reaction [105]. The newly 
generated ferrous ions react with H2O2 and generate hydroxyl 
radical and ferric ion, and the cycle continues [3]:

FeOH2++hν ⟶ Fe2++ OH. ------------ (13)

The studies reported in the literature showed that the 
combination of Fenton reaction with conventional radiation 
zone of the visible and near ultraviolet gives a better degradation 
of organic pollutants. Pollutants such as 4-chlorophenol [101], 
nitrobenzene and anisole [102], herbicides [98] and ethylene 
glycol [103] were degraded effectively by photo-Fenton process 
[3].

A study [104] compared the degradation of two commercial 
anionic surfactants such as sodium dodecyl sulfate and 
dodecylbenzenesulfonate, using Fenton reagents (Fe2+ or Fe3+ 

with H2O2 in the presence or absence of solar radiation), photo-
catalysis (TiO2 with solar irradiation) and photo-degradation 
using solar sensitizer (pyrylium salt). They demonstrated that 
the addition of the solar sensitizer did not efficiently degrade the 
surfactants and their further studies concluded that the photo-
Fenton processes using solar radiation (0.1 mM of Fe2+ or Fe3+, 
and 1 mM H2O2) had a higher rate of surfactant degradation than 
that of solar-TiO2 treatment [3].
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Sono-Photo-Fenton Process
The combined treatment using ultrasound and ultraviolet 

along with Fenton reagent is known as sono-photo-Fenton (SPF) 
process, which enhanced the production of hydroxyl radicals in 
an aqueous system significantly. Sonolysis of water produces 
hydroxyl radicals and hydrogen atoms. However, significant 
loss of H .and hydroxyl radical species occurs due to the 
recombination. On the other hand, the applications of UV light, 
converted the hydrogen peroxide produced by recombination 
of hydroxyl radicals, and in turn increased the amount hydroxyl 
radical [105]. The intermediate complex formed due to the 
reaction of Fe3+ with H2O2 during the Fenton reaction could be 
reduced to Fe2+ by sonolysis [106] and photolysis [3,107]. The 
degradation of recalcitrant pharmaceutical micro-pollutant 
ibuprofen (IBP) by means of sono-photo-Fenton, sono-
photo-catalysis and TiO2/Fe2+/sonolysis processes has been 
investigated [108]. The presence of ultrasound irradiation in 
photo-Fenton process improved the iron catalytic activity and 
ibuprofen degradation and mineralization to 95% and 60%, 
respectively. On the other hand, total removal of ibuprofen 
and elimination of more than 50% of dissolved organic carbon 
were observed by photo catalysis with TiO2 in the presence of 
ultrasound irradiation [3]. The results showed that, the hybrid 
system is a promising method for complete elimination/
mineralization of the recalcitrant micro-contaminant ibuprofen.

Sono-electro-Fenton process
Many researchers have reported the coupling strategy 

between sonochemistry and different AOPs such as the Fenton 
process giving rise to the concept of advanced sonochemical 
hybrid techniques that possess significantly greater efficacy for 
water remediation [109-111]. Hydroxyl radicals produced by 
water decomposition are used for the degradation of organics 
[3,111]. The effect of low frequency ultrasonic irradiation on 
the sono-electro-Fenton oxidation of cationic red XGRL has been 
evaluated [112]. Ultrasonic irradiation significantly increased 
the hydrogen peroxide production rate and reduced the time 
needed to reach the maximum hydrogen peroxide concentration. 
In addition, ultrasonic irradiation has a considerable effect 
on the degradation of cationic red X-GRL. The results showed 
that the degradation rate followed pseudo-first order kinetics 
and also decolorization rate increased with ultrasonic power. 
Furthermore, total organic carbon removal efficiency and 
mineralization were greatly promoted in sono-electro-Fenton 
process compared to electro-Fenton process [3]. These results 
proved that sono-electro- Fenton process is a promising 
technology in terms of colored wastewater treatment.

Photo-electro-Fenton process
The catalytic effect of Fe2+ in the electro-Fenton process can 

be enhanced by irradiating the contents with UV light. Thus, the 
combination of electrochemical and photochemical process with 
Fenton process is called photo-electro-Fenton process generates 
greater quantity of free radicals due to the combination effect 

[113,114]. The direct photolysis of an acid solution containing 
peroxide generates hydroxyl radicals through the breakdown of 
the peroxide molecule according to reaction (14). This reaction 
increased the oxidative capability of the process due to the 
additional production of hydroxyl radicals. Thus, the degradation 
of target organic substrate can be enhanced when the solution is 
irradiated with UV light in addition to the application of electro- 
Fenton process. Photochemical regeneration of Fe2+ by the photo 
reduction of Fe3+ ions and photo-activation of complexes renders 
the photo-electro-Fenton systems more efficient [3,115,116]. 
At acidic pH, oxalic acid derivatives behave as the photo-active 
complexes in the presence of ferric ions which undergo photo-
decarboxylation reaction [19] as shown in reaction (15).

H2O2+hν ⟶2OH. ------ (14)

R(CO2)Fe(III)+ hν ⟶RCO2.+Fe(II)+ R.+CO2 -------- (15)

The studies pertaining to the application of photo-electro-
Fenton process are very limited and most of the studies are 
related to the treatment of herbicide [113,115,117], 4-chloro-2-
methylphenol [118] and dyes [119]. In another study [120] solar 
photo-energy is recently used as photon source and reduced the 
operating costs of the process substantially [3].

Application of Fenton and Fenton Based Systems in 
Industries

There have been extensive studies on application of Fenton 
and Fenton-based systems for treatment of various industrial 
wastewaters and synthetic recalcitrant solutions at laboratory 
or pilot plant scales. Amongst them are dyes which are the 
major organic pollutants. Photo-Fenton treatment of synthetic 
solutions of dyes such as acid blue, acid orange 7 and acid red 151 
[121], remazol red RR [40], orange II [122], procion red H-E7B 
and cibacron red FN-R [123] and 218 also real dye wastewaters 
[124-127] are examples that have recently been reported. In 
addition, Fenton-based systems application exclusively or in 
combination with other processes for treatment of industrial 
wastewaters such as winery [128], pulp mill [129], cork boiling 
[130], plastic containers washing [131], pharmaceutical [132] 
and alkydic resins [133] have been well documented. Despite a 
large number of studies on dye/textile wastewaters treatment 
by homogeneous and/or heterogeneous Fenton-based systems, 
it has been reviewed previously by a number of researchers 
[39,134]. Accordingly, this part of the present review focuses 
on the application of these oxidation processes for treatment 
of pharmaceuticals, agrochemicals and petroleum refinery 
effluents.

Pharmaceuticals
Pharmaceutical plants generate wastewaters containing 

toxic solvents and intermediates that are usually lipophilic 
and non-biodegradable in regard to accepting media. Besides 
pharmaceutical manufacturing discharges, other sources 
are effluents containing personal care products, hospital 
wastewaters and veterinary effluents. Inappropriately treated 

http://dx.doi.org/10.19080/IJESNR.2017.02.555594


How to cite this article: Sina M A, Mohsen M. Advances in Fenton and Fenton Based Oxidation Processes for Industrial Effluent Contaminants Control-A 
Review. Int J Environ Sci Nat Res. 2017;2(4): 555594. DOI: 10.19080/IJESNR.2017.02.5555940122

International Journal of Environmental Sciences & Natural Resources

pharmaceutical effluents results in several problems such 
as occurrence of antibiotic-resistant bacteria, interference 
in human endocrine system and feminization of higher 
organisms [135-138]. However, the potential effects of a large 
number of these active chemicals in co-existence with other 
chemicals on human being and other living organisms are not 
entirely understood [39,139]. Literature has shown that the 
effectiveness of conventional treatment methods for recalcitrant 
pharmaceutical wastewaters is limited. In contrast, AOPs have 
shown great ability for oxidizing and mineralizing many non-
biodegradable pharmaceuticals. Various AOPs such as ozonation 
[140], sonolysis [141], UV/H2O2 system [142], wet air oxidation 
[143], Fenton oxidation [144] and photo-Fenton process have 
been applied for pharmaceuticals degradation in water and 
wastewater [39,145].

Although pharmaceutical wastewater treatment by 
homogeneous Fenton-based processes has been reported as one 
of the most appropriate methods amongst AOPs, its degradation 
efficiency depends on COD: H2O2:Fe2+ ratio and the pH range 
of 2.5-4 [142]. Trovo et al. [146] studied paracetamol, a pain 
reliever drug, degradation by solar Fenton-based processes using 
FeSO4 and potassium ferrioxalate (Fe-Ox). The degradation was 
enhanced with FeSO4 as compared to Fe-Ox. This can be related 
to the effects of FeSO4 in forming large amount of hydroxylated 
intermediates and accordingly, increasing in the generation 
of Fe2+ through Fe3+ reduction. On the other hand, complete 
degradation of amoxicillin (AMX) was obtained using Fe-Ox with 
only 5 min of irradiation, in comparison with FeSO4 that took 15 
min [147]. Kajitvichyanukul and Suntronvi part [148] employed 
photo-Fenton process as a pre-treatment step to enhance 
the oxidation degree of hospital effluents at laboratory scale. 
Complete COD removal was obtained by sequential activated 
sludge treatment which is a less costly post-treatment method 
[39].

Agrochemicals
 The increase in food and fiber production has always been 

connected to the use of pesticides [149]. Pesticides including 
herbicides, insecticides and fungicides are used based on their 
specific biological activity on target species [150]. Besides 
cultivated areas, one of the most important sources of pesticide 
contamination is discharges from pesticide production plants 
[151]. In general, pesticides affect the health of living organisms 
directly and are toxic and carcinogenic in nature even at micro-
concentrations [152]. Generally, pesticides are removed from 
industrial wastewaters by physical-chemical methods due to 
the shock doses associated with pesticides and their toxicity to 
microbial cultures [153]. Literature reviews confirm Fenton-
based processes as effective methods for degradation of 
recalcitrant agrochemicals. In addition, Fenton-based processes 
have been reported as one of the most appropriate pre- 
treatment/treatment systems compared to other AOPs [39]. For 
example, Teixeira et al. [154] carried out aphoto-Fenton process 
along with (H2O2/UV), (TiO2/UV) and conventional Fenton for 

decontamination of wastewaters containing active compounds of 
a fungicide (tebuconazole) and an insecticide (methamidophos) 
at laboratory scale. The results indicated that the photo-Fenton 
process performed better compared to other AOPs at all tested 
Fe2+ and H2O2concentrations. 

In addition, Fenton-based processes were able to reduce 
dissolved organic carbon (DOC) and COD to 32% and 27% 
respectively after 60 min. Methomyl is known as a highly toxic 
carbamate insecticide [155] that is highly soluble in water. The 
study on the removal efficiency of this toxic chemical using 
Fenton and Fenton-based processes was carried out by Tamimi 
et al. [65]. Complete degradation of methomyl was attained after 
30 min of irradiation whereas its removal degree with Fenton 
oxidation was 86.1% after 60 min. Lower reaction time (3.96 
min vs. 13.86 min) and higher oxidation rate (0.1750 min-1 
vs. 0.0500 min-1) were observed for Fenton-based processes 
compared to the Fenton process. In another study, Maldonado 
et al. [156] compared the efficiency of photo-Fenton with 
TiO2 photo catalysis and Fenton process for degradation of 
a number of pesticides (alachlor, atrazine, chlorfenvinphos, 
diuron, isoproturon and pentachlorophenol) and a mixture of 
them. The authors reported photo-Fenton process as the most 
suitable system for mineralization of these compounds and their 
mixture with the advantage of shorter reaction time (38-79%) 
compared to TiO2 photo catalysis. In addition, total TOC removal 
was obtained in Fenton-based systems after less than 15 min of 
irradiation, while no mineralization of atrazine and isoproturon 
took place using Fenton process. The photo-reactivity of the 
pesticides was reported in the following order: diuron > alachlor 
> isoproturon > chlorfenvinphos > atrazine with similar behavior 
in both mixture and individual treatments [39].

Petroleum Refinery plant
 Petroleum refinery plant transforms crude oil into multitude 

refined products. Besides air pollution, the generated effluent 
is of concern [157]. Large amounts of water, that is about 0.4-
1.6 times the quantity of the processed crude oil, is used for 
refining processes of cooling system, distillation, hydro-treating, 
and desalting [158]. This wastewater may expose various 
contaminants into the aquatic environment. Petroleum refinery 
effluent (PRE) has high concentrations of aliphatic and aromatic 
compounds especially polycyclic hydrocarbons along with oil 
and grease [159] in which aromatic fraction is more toxic and 
recalcitrant than aliphatic portion [160-163]. The aromatics are 
therefore the principal issue in degradation due to their toxicity 
and potential hazards. Generally, PREs are characterized by high 
COD, low biodegradability (BOD5/COD <0.4) and large fraction 
of high molecular-weight organic compounds [158,163,164]. 
Several treatment technologies such as adsorption [165], 
coagulation and flocculation [166], bioremediation [167], 
electrochemical processes [168], membrane technology [169] 
and different advanced oxidation processes of wet air oxidation 
[170], photolysis [160], Fenton [104] and photo-Fenton 
[158,171] have been used for petroleum refinery wastewaters. 
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However, biological treatment has exhibited poor 
performance for complete removal of refractory chemicals 
from PREs [172]. Coelho et al. [158] carried out Fenton-based 
processes for DOC removal of petroleum refinery sour water. They 
conducted batch oxidation experiments in a two-step (Fenton 
and photo-Fenton) and one-step (photo-Fenton) process. There 
were 87% and 70% DOC removal, demonstrating improvement 
in degradation with a decrease in energy consumption in 
treatment process by applying combined processes [39]. Photo-
Fenton oxidation system was also tested on treatment of water 
contaminated by diesel oil in a study by Galvao et al. [171]. In 
this study, although the amount of ferrous ion was very low 
(0.1 mmol L-1), the TOC removal was up to 99%. However, only 
28% and 26% mineralization of diesel oil were obtained using 
UV photolysis and thermal Fenton oxidation. Nevertheless, 
longer irradiation time in UV/H2O2 process could increase the 
mineralization up to 71%. Similarly, da Silva et al. [173] reported 
89% of TOC removal in a wastewater containing xylene by 
applying 0.26 mmol L-1 Fe2+ when the allowable limit of Fe2+ was 
0.27 mmol L-1[39].

Practically, it is not conceivable to judge the effectiveness 
of all Fenton-based processes for PREs based on the present 
available studies. More studies on simulated and real PREs with 
complex matrices, instead of one organic compound, is required 
to their effectiveness on comparison. In addition, due to 
complex nature of PREs, combination of Fenton or Fenton-based 
processes with a series of pretreatment and/or post-treatment 
processes will be helpful to achieve cost effective and acceptable 
results [39].

Transition Metal Substituted Iron Oxide Catalysts
Since both homogeneous and heterogeneous iron-based 

Fenton AOPs show severe practical disadvantages, research 
efforts are being focused on finding new practically acceptable 
and economically-viable Fenton catalysts to generate hydroxyl 
radical from H2O2. In this regard, to achieve an efficient electron 
transfer to H2O2, the ideal Fenton catalyst should exhibit multiple 
oxidation states because the catalytically-active species with 
a specific oxidation state can be easily regenerated from an 
inactive form through a simple redox cycle. To achieve this 
objective, both active and inactive redox states should be stable 
over a wide pH range to prevent the precipitation of the catalytic 
species. Elements with multiple oxidation states efficiently 
decompose H2O2 even at neutral pH in both homogeneous and 
heterogeneous reaction conditions. While the exact activation 
mechanism is strictly dependent on the nature of the catalyst, 
it is effectively controlled by solution pH and/or metal-ligand 
complexation. Importantly, redox transformation of these non-
ferrous metal species is easily achieved using the pH-dependent 
dual role of H2O2 as both oxidant and reductant [1].

Aluminum
In homogeneous aqueous solution, the only accessible 

oxidation state for aluminum (Al) is Al3+. Thus, unlike the case 

of iron with both Fe2+ and Fe3+ states, the electron transfer 
reaction between Al3+ and H2O2 is not possible. On the other 
hand, the charge transfer using zero-valent aluminum (Al0 
or ZVAl) as the electron source is thermodynamically more 
efficient: ZVAl [E0(Al3+/Al0) = −1.66 V] provides a much stronger 
thermodynamic driving force for the electron transfer to H2O2 
[E0(H2O2/HO.) = 0.8 V at pH 7] compared to Fe0 [E0(Fe2+/Fe0) 
= −0.44 V] or Fe2+ [E0(Fe3+/Fe2+) = +0.776 V] . This enhanced 
electron transfer capacity of ZVAl was first demonstrated in 
1991 to reduce nitrate to ammonia in aqueous solution [174]. 
Ten years later, Lien and co-workers [175,176] reported the 
oxidation of organic substrates using electron transfer from 
surface-functionalized aluminum metal. Using bifunctional 
aluminum prepared by sulfated Zale with sulfuric acid, electron 
transfer to molecular oxygen (O2) generated reactive oxygen 
species (ROS) for the oxidation of methyl tert-butyl ether 
(MTBE) and tert-amyl methyl ether (TAME) [1]. The sulfate 
species on the ZVAl surface enhanced the oxidation efficiency by 
first stabilizing the ROS on the active sites and then adsorbing 
the organic substrate to initiate oxidation.

The use of ZVAl to decompose H2O2 into hydroxyl radicals 
for pollutant oxidation has major advantages such as high 
natural abundance (most abundant metal in earth’s crust) and 
low weight (three times lighter than Fe). However, the surface 
Al2O3 layer cannot be easily removed in neutral or near-neutral 
pH conditions, which restricts the practical applications of 
ZVAl-based AOP systems to strictly acidic environments (below 
pH 4), similar to Fe based Fenton processes. Nevertheless, the 
ZVAl aerobic system still exhibits significantly higher oxidative 
capacity compared to Fe-based one, mainly owing to the high 
reduction potential and the enhanced aqueous solubility of Al3+ 
species [177]. Thus, within the same practical limitations (acidic 
effluents only), the use of ZVAl offers an efficient alternative for 
ex situ oxidation processes [1].

Cerium
Among all rare-earth or lanthanide group elements, cerium 

is the only metal capable of activating H2O2 by Fenton-like 
mechanism. Due to its 4f2 6s2 valence configuration, cerium is 
the only rare earth element to exhibit both +3 and +4 oxidation 
states in solution. While the cerous (Ce3+) form is a strong 
reducing agent and easily oxidized by O2 in alkaline condition, 
the ceric (Ce4+) species is a strong oxidant under acidic condition. 
Thus, cerium can easily cycle between the Ce3+ and Ce4+ oxidation 
states under suitable redox conditions [E0(Ce4+/Ce3+) = +1.72 
V]. To exploit this simple redox transformation for catalytic 
applications, cerium oxide (CeO2 or ceria) is the most popular 
choice among all cerium compounds. Owing to the presence of 
oxygen vacancies on the oxide surface, the availability of surface 
Ce3+ at such defect sites is enhanced and induces high catalytic 
activity [178]. In addition, the easy formation and elimination 
of oxygen defects [179] during catalytic applications allow the 
repeated redox cycles of Ce4+/Ce3+ on the particle surface. Thus, 
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CeO2 is widely used in catalytic wet air oxidation, water gas-shift 
reaction, and three-way automobile exhaust converters [1,180].

A series of in-depth investigations of the CeO2/H2O2 Fenton-
like system by Chen and coworkers [181-184] revealed that 
the production of hydroxyl radicals (and overall oxidation 
mechanism) critically depends on the oxide surface properties. 
Without any surface modification, the reaction between Ce3+ 
and H2O2 leads to the formation of stable brown peroxide-like 
species (≡Ce3+−OOH−), which remain stable even at neutral pH 
and do not directly decompose to generate free hydroxyl radicals 
[182, 183]. Thus, bare cerium oxide is incapable of Fenton-like 
oxidation based on hydroxyl radicals [1]. However, these peroxide 
species easily decompose into hydroxyl radicals when cerium 
oxide is pre-treated using sulfuric acid (sulfated). The CeO2/
H2O2 heterogeneous redox system can be easily manipulated 
by simple surface modification to efficiently generate hydroxyl 
radicals under mild acidic condition. Due to the critical role of 
surface Ce3+ species on the catalytic efficiency, the use of nano-
sized ceria particles will further amplify the effective surface 
concentration of Ce3+ and increase the overall hydroxyl radical’s 
yield. However, considering the acute cytotoxicity of cerium (both 
ionic and oxide forms) to aquatic life, plant species, and human 
beings [185], the catalytic stability and post-treatment disposal 
of cerium oxide catalysts need to be thoroughly examined before 
practical applications [1].

Chromium
Chromium (Cr) can theoretically exist in multiple oxidation 

states (from -2 to +6) but only the trivalent [Cr(III)] and hexavalent 
[Cr(VI)] species are commonly detected in water. Under the Eh-
pH range of natural water, the cationic Cr(III) is the prevalent 
species at low Eh and pH values, whereas Cr(VI) exists as anionic 
CrO42− or Cr2O72− in oxidizing conditions. While Cr(III) is an 
essential micronutrient for animals and plants and is critically 
involved in sugar metabolism [186], Cr(VI) is a Group ‘A’ human 
carcinogen and causes mutagenic liver damage, pulmonary 
congestion, and allergic dermatitis [187]. This contrasting 
toxicity profile is critically dependent on the aqueous solubility 
characteristics of both chromium species. The trivalent Cr(III) is 
easily precipitated as insoluble chromium hydroxide [Cr(OH)3] 
in neutral and alkaline conditions (pH > 5), but the hexavalent 
Cr(VI) is completely water soluble in the entire pH range [1]. 
Despite their different aqueous solubility behavior and inherent 
toxicity, both trivalent and hexavalent chromium species react 
strongly with H2O2 and generate hydroxyl radicals via a series 
of Fenton-like processes.

The reaction between Cr(VI) (present as oxyanion CrVIO42−) 
and H2O2 initiates the replacement of oxo ligands by peroxo 
groups and one-electron reduction of the metal center to form a 
[CrV(O2)4]3− complex, which subsequently decomposes to form 
hydroxyl radicals and regenerate Cr(VI) [187-189]. Although 
the dissociation of this Cr(V)-complex into hydroxyl radicals is 
strongly favored at acidic pH, the oxidation of various organic 

pollutants was achieved even in neutral and near-alkaline 
conditions [188]. This indicated the formation of a reactive Cr(V) 
intermediate in a wide pH range (3.0−9.0), which is an advantage 
of using Cr(VI) for Fenton-like activation of H2O2. The high 
aqueous solubility of Cr(VI) is also an additional merit for using 
Cr(VI)/H2O2 as a homogeneous AOP. However, despite these 
practically-favorable reaction conditions, the extreme toxicity 
of Cr(VI) prohibits any deliberate addition into wastewater 
treatment. Nevertheless, the Cr(VI)/H2O2 redox system is ideal 
for the treatment of wastewaters already co-contaminated with 
Cr(VI) [1] and organic compounds such as effluents from leather 
tanning, electroplating and petroleum refining industries.

Cobalt
Divalent cobalt ion (Co2+) has been widely investigated as 

a Fenton-like catalyst for the oxidation of organic pollutants. 
Using the Co2+/Co3+ redox couple [E0(Co3+/Co2+) = +1.92 V], 
a majority of studies have largely focused on the activation of 
persulfate (S2O82−) or peroxymonosulfate (HSO5−) to generate 
sulfate radicals (SO4.−) as the main oxidant species [1]. Despite 
the fact that Co2+ demonstrates the best efficiency for SO4.− 
generation compared to all other transitional metals [190,191], 
the generation of hydroxyl radicals by Co2+-mediated activation 
of H2O2 has been documented only in a few studies.

Ling et al. [192] first investigated the homogeneous Co2+/
H2O2 redox system for the complete oxidation of basic blue 
dye and reported a strong correlation between [H2O2] and 
degradation efficiency. Similar studies using photo-Fenton 
[193] and electro-Fenton [194] processes based on soluble Co2+ 
salts and H2O2 also demonstrated efficient oxidation capacity. 
However, the existence of a Fenton-like oxidation pathway via 
formation of hydroxyl radicals was not discussed or confirmed 
in all three reports. On the other hand, the oxidation of organic 
pollutants by heterogeneous Co2+ catalysts like Co2+/Al2O3 
[195], Co2+/MCM-41 [196] and Co2+/carbon aerogel [197] was 
also achieved in the presence of H2O2. The proposed reaction 
mechanism suggested the formation of a colored peroxo-cobalt 
complex on the catalyst surface [1], and further reaction with the 
organic substrate to generate organic radicals (reactions 16-18) 
[195]:

SCo2+(H2O)4+ H2O2  ⟷ SCo2+ (H2O)4 OOH+ H+   --------------   (16)

SCo2+ (H2O)4 (OOH)+ R⟶ SCo2+(H2 O)4+ROOH.(or R).  ------  (17)

SCo2+ (H2O)4+ H2O2  ⟶ SCo2+ (H2O)4+ 1⁄2 O2+ H2O------	    (18)

Where >S refers to the support matrix and R denotes organic 
pollutant. However, the decomposition of peroxo−cobalt complex 
to generate hydroxyl radicals and its possible involvement in the 
overall oxidation pathway (HO. + R → R.) was not explored [1].

Copper
In terms of its reactivity towards H2O2, copper shows 

strikingly similar redox properties like iron. Both the monovalent 
(Cu+) and divalent (Cu2+) oxidation states react easily with H2O2 
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(reactions (19) and (20)), analogous to the Fe2+/H2O2 and Fe3+/
H2O2 reaction systems, respectively [1].

Cu2++ H2O2  ⟶ Cu++ HO2.+OH----------	 (19)

Cu2++ H2O2  ⟶ Cu2++ OH.+OH  --------       (20)

The hydrolyzed complex with the most stable oxidation 
state, i.e., Cu(OH)2 for Cu2+ and FeOH(H2O)2+ for Fe3+, are both 
Fenton-active catalysts [198]. However, there is a strong 
difference in the aqueous solubility characteristics of Cu2+ and 
Fe3+. While the iron aquo complex [Fe(H2O)6]

3+ is insoluble 
at pH > 5, the corresponding copper complex [Cu(H2O)6]2+ is 
predominant in neutral pH conditions [199]. This means that [1] 
the Cu2+/H2O2 Fenton-like system should work over a broader 
pH range, compared to the Fe3+/H2O2 redox system working 
only in the acidic condition. Accordingly, all Cu2+- based Fenton 
catalysts efficiently generate hydroxyl radicals for the oxidation 
of various organic pollutants in near-neutral or neutral aqueous 
solutions. Additionally, Cu2+ complexes with organic degradation 
intermediates (organic acids) are easily decomposed by 
hydroxyl radicals, whereas, the corresponding Fe3+ complexes 
are highly stable [200,201]. As a result, unlike Fe3+- based 
systems, Cu2+ complexation does not block (or deactivate) the 
Fenton reaction nor prevents complete mineralization of organic 
pollutants [1,199]. Thus, considering the similarities with Fe3+/
H2O2 Fenton-like system combined together with high catalytic 
stability in neutral conditions, the cupric ion (Cu2+) satisfies 
all basic redox criteria required to activate H2O2 in large-scale 
practical applications.

Manganese
Compared to cobalt and copper, manganese (Mn) can 

exist in more variety of oxidation states ranging from 0 to 
+7. Although manganate (Mn6+) and permanganate (Mn7+) 
compounds are highly stable, only the oxidation states of +2 to 
+4 have environmental and catalytic significance. Both Mn2+ 

and Mn3+ compounds are water-soluble, whereas all naturally 
occurring manganese species (minerals and ores) contain 
predominantly Mn3+ and Mn4+ in oxide forms (Mn3O4, Mn2O3 
and MnO2). However, manganese exists only as Mn2+ or Mn4+ in 
the aquatic environment and the “bioavailable” divalent form is 
stable only at low pH (pH < 4) and in reducing conditions [202]. 
In aerobic neutral conditions, the complete oxidation of Mn2+ 
to Mn4+ involves the intermediate formation of colloidal Mn3+- 
oxyhydroxides and subsequent conversion into MnO2 [1]. The 
tetravalent Mn species can be easily reduced to Mn2+ through 
chemical redox processes (reaction (21)), which makes MnO2 

a powerful oxidant for direct transformation of aqueous toxins 
[203].

MnO2+S ⟶ Mn2++Oxidized-S ---------  (21)

Where S represents the organic/inorganic substrate. 
Therefore, the facile inter-conversion between Mn2+ and Mn4+ 
via intermediate Mn3+ species should enable the Mn-catalyzed 
Fenton-like activation of H2O2 [1]. Despite the large variations 

in catalyst properties and radical characteristics, the oxide 
reactivity does not change significantly in the pH range 3.5-
7.0 [204]. Mn dissolution does not occur above pH 5.5, which 
highlights the stability and easy recyclability for repeated 
oxidation cycles [1]. Therefore, manganese oxides offer many 
advantages for heterogeneous Fenton applications such as:

•	 	 optimal performance in near-neutral conditions, 

•	 	 selective formation of ROS by careful choice of oxide 
composition, and

•	 	 High natural abundance of structurally-different oxide 
compounds [1].

Ruthenium
Among the transition metal catalysts, ruthenium (Ru) is the 

only member of the platinum group metal that exhibits Fenton-
like activity in the presence of H2O2. Although the possible 
oxidation states of Ru range from 0 to +8, only the divalent 
(Ru2+), trivalent (Ru3+) and tetravalent (Ru4+) oxidation states 
are commonly found. Ruthenium complexes have been widely 
investigated for various organic transformation reactions like 
olefin hydroxylation, alcohol dehydrogenation, water oxidation 
and alkene epoxidation [1,205]. However, only limited studies 
on the oxidation of organic pollutants using Ru-mediated H2O2 
decomposition have been published so far [1].

Using the Ru3+/Ru2+ redox couple [E0(Ru3+/Ru2+) = +1.29 
V], the oxidation of bisphenol A was achieved by Hu et al. [206] 
using Ru2+-polypyridyl complex immobilized on cation exchange 
resins Dowex-50W and Chelex-100. The reaction between Ru2+ 
and H2O2 efficiently generated hydroxyl radicals in the pH range 
4.0-8.0 with the oxidation efficiencies increasing at higher pH. 
The use of resin supports not only prohibited the leaching of the 
Ru complex but also facilitated the repeated oxidation cycles and 
easy catalyst recovery. On the other hand, Rokhina et al. [207] 
investigated the oxidation of phenol using porous RuI3 catalyst 
(anhydrous powder form) as an activator of H2O2 [1]. Analogous 
to the Fe3+/H2O2 Fenton-like system, the in situ formation of 
Ru2+upon the reduction of Ru3+ initiated the decomposition 
of H2O2 into hydroxyl radicals. The high stability of these Ru 
catalysts prevents metal leaching and allows multiple catalytic 
cycles. The latter is more important since Ru is an expensive and 
rare element. Therefore, the practical use of the Ru-based Fenton 
systems may be limited to the cases requiring exceptionally high 
catalytic performance and specialized reaction conditions [1].

Conclusion
It is difficult to treat wastewaters from pharmaceutical, 

agrochemical and petroleum refinery plants effectively by 
conventional methods due to their recalcitrant nature and 
resistance to bio-degradation. Advanced oxidation processes are 
found to be an environmental friendly process for the degradation 
of refractory compounds. Among advanced oxidation processes, 
Fenton and Fenton-based reaction treatment processes are 
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known to be very effective in the removal of many hazardous 
organic pollutants from environment.

The popularity of Fenton and Fenton-based advanced 
oxidation processes for wastewater treatment has been credited 
mostly to the choice of iron-based catalysts. However, because 
of the restricted solubility of iron species, research efforts have 
focused on the establishment of iron-free Fenton systems for 
the activation of H2O2. Iron oxides as heterogeneous catalysts 
demonstrated considerable improvements in Fenton reactions 
for contaminant removal from polluted medium/sites due to 
their higher activity under a broad range of pH in contrast with 
soluble iron salts. The conclusions derived from the various 
literature sources can be stated as follows:

1.	 Catalytic materials with multiple oxidation states 
and redox stability efficiently decompose H2O2 to 
generate HO even in neutral/alkaline conditions in both 
homogeneous and heterogeneous reaction conditions.

2.	 The cytotoxic nature of soluble species like cerium, 
chromium and cobalt seriously limits the extent of 
large-scale applications, with only restricted usage 
permitted in controlled reaction conditions.

3.	 The development of ultra-stable heterogeneous metal 
complexes with enhanced reactivity for H2O2 and zero 
metal leaching remains the focal point to establish 
practically-viable and environmentally-sustainable 
iron-free Fenton systems.

4.	 Hybrid methods are not economically viable techniques 
to degrade large quantum of effluent disposed by the 
industries. Hence it is advisable to use these methods 
as pretreatment to reduce the toxicity to a certain level 
beyond which biological treatment can be employed.

5.	 Drawbacks associated with the use of Fenton and Fenton-
based oxidation are the safety hazards associated 
with using H2O2 and the need to firstly reduce the pH, 
followed by a subsequent neutralization.

6.	 Chelating agents stabilize iron species in the solution 
and prevent sludge production at pH values higher than 
4.0 and increase Fenton degradation efficiency through 
several routes.

Major attention should be devoted in the future on the 
identification of reaction intermediates, development of 
rate expressions based on established reaction mechanisms, 
identification of scale-up parameters and criteria for cost 
effectiveness. These studies should aim at addressing different 
challenges to overcome pH-dependency of the reaction and its 
future industrial applications by using solar energy which can 
minimize relevant energy cost.
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