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Abstract

Vehicle Specific Power (VSP) is conventionally defined to represent the instantaneous vehicle engine power. It has been widely utilized that 
the impact of vehicle operating conditions on emission and energy consumption estimation is associated with vehicle speed, roadway grade and 
vehicle acceleration or deceleration on the basis of the second-by-second vehicle operation. VSP is hence incorporated as a key contributing factor 
into the vehicle emission models in MOVES.  For practical application, however, it is always cumbersome to accurately profile VSP distribution 
by collecting and using localized grade and times-of-day traffic data.  Therefore, it is necessary to clarify the impacts of these factors on highway 
vehicle emission estimation. This paper presents a study in which previous studies are extended by deeply investigating the characteristics of 
VSP distributions and their impacts due to varying freeway grades, as well as time-of-day traffic factors.

Statistical distribution models with a scope of bins is identified through a goodness of fit testing approach by using the Global Positioning 
System (GPS) data collected from the interstate freeway I-75 segments in the Cincinnati area. The data was collected at a selected length of 30 
km urban freeway for AM, PM and Mid-day periods. The datasets representing the vehicle operating conditions for the VSP calculation were then 
extracted from the GPS trajectory data. The results of distribution fitting show that the Wake by distribution is able to capture most distribution 
characteristics of VSP at all grade bins under a higher speed variation condition, and the generalized logistic distribution fits the sample data 
better at grade bins between -4% and 4%when the speed variation is lower. In addition, the speed variation lying behind the times-of-day 
differences is also identified to be a contributing factor of urban freeway VSP distribution. The enhanced understanding and modelling of VSP 
distribution by roadway grade provided by the study can facilitate the preparation of MOVES vehicle operating mode distribution inputs.

Keywords: Vehicle Specific Power Distribution; Second-By-Second GPS data

Abbreviations: VSP: Vehicle Specific Power; GPS: Global Positioning System; SIP: State Implementation Plan; U.S. EPA: United States 
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Introduction 
Global Positioning System (GPS) data collected locally, 

providing high-temporal resolution (e.g. second-by-second) speed, 
acceleration or deceleration driving cycles, enables modelling 
the impact of vehicle operation conditions on emission and 
energy consumption with Vehicle Specific Power (VSP) for local 
projects. MOVES, developed by the United States Environmental 
Protection Agency (U.S. EPA), are used to estimate emissions for 
various mobile emission sources and allow multiple scale analysis 
such as emission budgeting of State Implementation Plan (SIP) 
and transportation conformity purposes [1]. In applying the 
MOVES model, it is required to convert traffic inputs into the VSP 
distribution, i.e., operating mode distribution [2], to satisfy the  

 
need of generating an operating mode distribution for MOVES for 
maximizing its capacity to accurately reflect real-world emissions.

It is critical to recognize the similarities and differences 
of engine instantaneous power distributions on a given 
roadway. There has been a substantial body of research on VSP 
distributions among roadways [3,4], vehicles [5], and vehicle 
speeds [6]. In addition to the speed and acceleration, the grade is 
another critical factor for estimating VSP. However, this factor has 
been usually overlooked and always assumed to be zero in many 
previous studies. In such cases, freeways located in hilly terrains 
of urban area cannot be realistically represented and modelled. 
As a consequence, the calculated VSP may be less representative 
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of the urban traffic fleet and then become insufficient to estimate 
the characterized emissions. To facilitate the preparation of the 
MOVES vehicle operating mode distribution inputs, an enhanced 
understanding and modelling of the VSP distribution within 
the road grade incorporated become indispensable. This paper 
presents a study in which previous studies are extended by 
investigating the characteristics of VSP distributions and their 
impacts due to varying freeway grades, as well as time-of-day 
factors.

Statistical distribution models with a scope of bins is identified 
through a goodness of fit testing approach by using the GPS data 
collected from the interstate freeway segments in Cincinnati area. 
In the rest of the paper, firstly, the literature reviews on the VSP 
profiling study is presented followed by the introduction of the 
data used in this study. Then, the methodology regarding VSP 
calculation and VSP binning is introduced, and the case study 
results of urban freeway segments in Cincinnati urban area are 
presented. Next, sample distribution fitting results for basic 
freeway segments are illustrated. Finally, the paper is summarized 
with conclusions and recommendations for further research.

Literature Review
VSP derived from second-by-second vehicle activities is critical 

to the on-road emission modelling. Besides that, microscopic 
simulation outputs can also be used to generate inputs for VSP 
distribution and MOVES. In the simulation based dynamic traffic 
assignment model for project level emissions analyses developed 
by [7], the operating mode distribution based on VSP distribution 
is calculated and used as MOVES model inputs. The procedure 
of deriving MOVES operating mode distribution using VISSIM 
simulation results was introduced by [8,9] pointed out that 
for vehicle emission estimation, the use of VSP distribution to 
calibrate micro-simulation model is more reasonable than using 
conventional approach  [10] proved that there is direct physical 
interpretation of the distribution characteristics of VSP and it 
has well statistical relations with on-road vehicle emissions [11] 
investigated VSP distributions and emission rates for five driving 
cycles from mild to aggressive [12] concluded that there were 
significant similarities when speed profiles of different roadway 
facility types are grouped by average link speed. 

Especially, where a mean speed is between 20 and 30 km/h, 
VSP distributions are found to be very identical. In [13] study, 
GPS and PEMS data was collected to investigate correlations 
between VSP and pollutants. It has been suggested that higher 
VSP values relate to higher emissions of Nitrogen Oxidizes, 
Hydro-Carbon, Carbon Dioxide, and Carbon Monoxide [14,15]. 
To determine driving patters of on-road vehicles and supported 
the development of the IVE model, VSP distribution patterns 
for Nairobi, Santiago and Sao Paulo have been included in the 
International Sustainable Systems Research Centre (ISSRC) 
funded handbook of air quality management project by  [16]. A 
study by [4] investigated VSP distribution among urban restricted 
access roadways and suggested that the distribution of VSP at 
various speed bins follow normal distribution. Based on this 

distribution assumption, the mean and standard deviation of VSP 
are modelled by using regression techniques.

The VSP distributions on the low speed (less than 20 km/h) 
segments by using the same methodology were investigated in 
a later study by the same authors. VSP distributions for every 
speed from 1-20 km/h are calculated and a quadratic relationship 
between VSP fraction and the VSP bin number was observed [5] 
concluded that normal distribution is most likely the case for 
travel speed lower than 90 km/h for both Heavy Duty Vehicles 
(HDV) and Light Duty Vehicles (LDV). Besides, default operating 
mode distribution patterns in MOVES are very similar to their 
experimental data. Through a study on the VSP based driving 
cycles of regular and express bus line and Bus Rapid Transit 
(BRT), [6] concluded that the distribution of VSP may shifts to 
the right and does not follow the normal distribution when the 
average speed is greater than 25 km/h. However, in most of 
previous studies, the grade as one of the most critical contributing 
factors of VSP has been overlooked. There is an essential need of 
fill the gap. To extend previous work on freeway VSP distribution, 
the paper calculates the second-by-second distances travelled 
and generates the freeway grades for the VSP calculation and then 
fits the VSP samples into a grade-specific distribution. The grade-
specific VSP distribution should allow a better comprehension of 
impacts of traffic operations on emissions.

Data
To fulfil the identified gap, a group of freeway segments from 

the Interstate Freeway 71 (I-71) within the Cincinnati urban area 
were targeted as the study site. The total length of the selected 
freeway segments is about 60 km for a round trip. To measure 
travel time reliability, the second-by-second GPS data was 
collected by group of students. Vehicles used in this data collection 
were chosen completely randomly. The data collection period 
covers AM peak hours from 7:00 AM to 9:00 AM, PM peak hours 
from 4:30 PM to 6:30 PM and Mid-day from 11:30 AM to 1:30 PM. 
A total of 38 trips were made from January 24th to April 20th, 
2012. For the AM perk hours, 36,503 data points were collected, 
27,931 data points for Mid-day and 42,624 for PM peak hours. 
There were approximately 110,000 records of data collected on 
the 30 km Interstate freeway. To remove invalid data from satellite 
signal lose, a data filter with high horizontal dilution of precision 
(HDOP) higher than 4 and low number of satellites (NSAT) less 
than 4 [17] was applied. After the data filtering, 97,491 records 
were used in the VSP calculation.

VSP and Binning
The mathematical presentation of VSP, first developed by 

[18], is calculated by dividing the summation of acceleration, 
rolling resistance, engine load against aerodynamic drag, and the 
kinetic and potential energies of the vehicle by the mass of the 
vehicle. In practice, a generic set of coefficients values estimating 
VSP for a typical light duty fleet is applied as a useful basis for 
characterization [19]. The VSP values for light duty vehicles are 
calculated by the following equation:
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3[1.1 9.81 (%) 0.132] 0.000302VSP v a grade v= × + × + + ×        (1)

Where, is vehicle speed (m/s); a is vehicle acceleration/
deceleration rate (m/s2); grade is vehicle vertical rise divided by 
the horizontal run (%). The horizontal run is measured by using 
the haversine formula in which it is assumed that the trajectory 
travelled between two consecutive points is a straight line in 
calculating shortest distance over the earth’s surface. Even at 
small distances, the great circle distance between two points 
remains particularly well-conditioned for numerical computation 
[20]. 
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Where, Lat is Latitude; Long is Longitude; R is radius of earth 
(mean = 6,371 km). Calculations of grade and VSP are implemented 
in R.A minimum interval of 1 kw/ton is used to avoid any bias, 
which can be incorporated in the binning and to draw out the 
quantitative relations between the VSP distribution and the grade 
by using the smallest bin possible. The VSP ranges from -20 to 20 
kw/ton based on the data collected from urban areas, e.g. Beijing 
is used in many previous studies [5,14]. While, the VSP range from 
less than zero up to 30 plus is used in MOVES model to capture the 
VSP on U.S. highways [21]. Using the dataset collected at the study 
site, 98.32% of the calculated VSP values using Equation (1) falls 
into the range of -30 to 45 kw/ton. Therefore, VSP bins from -30 
to 45 kw/ton are used in the paper.

The binning is presented as Equation (4) shows:
 ( ): [ , 1],VSP bin  ,   is integer from -30 to 45VSP n n n n∀ ∈ + =        (4)

VSP Distribution Fitting and Goodness of Fit Testing
A.  Freeway Grade Distribution

The freeway grade at the study site was calculated with 
Equation (2) and (3).A total of 92,914 grade data points is 
obtained. The samples collected shows that 92.35% grade data 
falls into the range from -10% and 10%. The distribution of 
freeway grade distributions at two percent interval is presented 
in Table 1. It is noticed that merely the grade between any data 
points equals to zero, which means the zero grade is rarely the 
case for urban interstate freeways in some of the U.S. metropolitan 
areas. Therefore, in VSP based emission and energy consumption 
modelling, the grade is an influential factor cannot be ignored. In 
the table, the distribution of freeway grades for the AM, PM peak 
and Mid-day is listed as well. In the collected data, 90.15% AM, 

97.3% Mid-day and 92.01% PM data falls into a grade range of 
-6% to 6%. The distribution near perfectly follows bell-curves of 
normal distribution. As grade values are mostly within the range 
of -6% to 6%, it can be concluded that the selection of grade bins 
from -10% to 10% is justified and the range can well represent the 
real-world condition.

B.  Candidate Distributions

From Table 1, the VSP distribution among the 12 grade bins 
seemed to be well presented by a normal distribution. However, 
Q-Q plots suggest that the sample tails are not quite following 
the normal distribution since they are rarely straight. In addition, 
there are peaks in almost all the histograms. A distribution fitting 
based on Q-Q plots and above observed distribution characteristics 
in Table 1 is necessary. Two distributions, generalized logistic 
distribution and Wake by distribution, are observed that can fit 
the data well. The Percentile-Percentile (P-P) plots comparing 
middles of sample distribution and model distribution are made. 
Afterwards, the goodness of fit testing for each of grade and time 
specific VSP datasets is determined based on the Kolmogorov-
Smirnov (K-S) test.

The probability density function of generalized logistic 
distribution is given as Equation (5): 
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Where, xz µ
σ
−

=  , k is the shape parameter; σ is the scale 
parameter (σ>0); μ is the location parameter. The probability 
density function of Wake by distribution is described as Equation 
(6): 

( ; , , , , ) (1 (1 ) ) (1 (1 ) )f x x xβ δα γα β γ δ ξ ξ
β δ

−= + − − − − −                                                               
  

 if 0 and >0,     x +  if <0 or =0x α γξ δ γ ξ ξ δ γ
β δ

≤ < +∞ ≥ ≤ ≤ −      (6)

Where β, γ and δ are shape parameters; ξ and α are location 
parameters. To eliminate any bias brought from the negative 
values of the VSP, a linear transformation is performed so that 
the sample distributions have a range of positive values yet the 
distributions remain unchanged. 

[ ( )]t xVSP Abs Min VSP VSP= +             (7)

Where, VSP is the transformed VSP and VSPx is the original 
VSP value. 

Table 1: Data distribution over freeway grades.

AM Percentage Mid-day Percentage PM Percentage

G>10% 291 0.91% 46 0.20% 313 0.83%

10%≥G>8% 280 0.87% 51 0.22% 253 0.67%

8%≥G>6% 548 1.71% 124 0.54% 538 1.42%

6%≥G>4% 1,327 4.14% 522 2.27% 1,264 3.34%

4%≥G>2% 4,083 12.73% 2,774 12.04% 4,669 12.35%
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2%≥G>0% 9,143 28.50% 7,939 34.47% 11,633 30.77%

G=0 0 0 2 0 0 0

0>G≥-2% 9,839 30.67% 8,067 35.02% 12,155 32.15%

-2%>G≥-4% 4,106 12.80% 2,861 12.42% 4,740 12.54%

-4%>G≥-6% 1,282 4.00% 431 1.87% 1,249 3.30%

-6%>G≥-8% 536 1.67% 115 0.50% 453 1.20%

-8%>G≥-10% 303 0.94% 47 0.20% 244 0.65%

G>-10% 340 1.06% 56 0.24% 292 0.77%

Sum 32,078 23,033 37,803

Total 92,914

C.  Parameter Estimation and Good of Fit Testing

The maximum likelihood method is used to estimate 
parameters. It maximizes the likelihood of a set of parameter 
values from the probability model to observed outcomes through 
an iterative procedure. The values of sets of parameters that 
maximize the sample likelihood are called Maximum Likelihood 
Estimates (MLE). The function is defined as:  
                                                                                              

1 2
1

( , ,... , ) ( , )
n

n i
i

L x x x f xθ θ
=

=∏                  (8)

Where, θ is the likelihood function.  The goodness of fit testing 
using the Kolmogorov-Smirnov (K-S) test yield to significance 
level α=0.05 is than compared within the candidate distributions. 
In the K-S test, a distance between the empirical distribution 
function of the sample and the cumulative distribution function of 
the reference distribution is quantified. The K-S test statistic of a 
given CDF is defined as:

1max( ( ) , ( )),   1 i nn n i i
i iD F x F x

n n
−

= − − ≤ ≤      (9)

Where, Dn is the K-S distance; n is total number of data points; 
F(x) is distribution function of the fitted distribution; Fn(x) equals 
to i/n; i is the cumulative rank of the data point. There are two 
hypothesises that are the null hypothesis (H0) and the alternative 
hypothesis (H1) in the K-S test. H0 assumes that the data follows 

a specified distribution, and the H1 does not. The fixed values at 
a chosen significance level (α), e.g. 0.01, are generally used to 
evaluate H0. If the test statistic D is greater than the critical value 
obtained from a table, the hypothesis concerning the distributional 
form is rejected at α.

Results
The data subsets classified grade bins and time of day are then 

been tested for the generalized logistic distribution and Wake by 
distribution. Comparisons between Histograms of the empirical 
data and fitted curves are illustrated in Figure 1 through 3 by 
time-of-day. In addition, P-P plots provide the magnification of 
differences of sample and model distributions are presented to 
the same dataset on these three figures. Figures 1-3 show the 
model PDF over sample histograms together with the P-P plots 
side-by-side of AM, mid-day, and PM data, respectively. There 
is very distinguishing characteristics of VSP distribution that 
almost every histogram has a peak. From the AM and PM GPS 
data distributions (as shown in Figures 1 & 3, respectively), it is 
found that the Wake by distribution fits the samples very good 
at smaller grades and the differences between sample and model 
distribution grow with the increase in the grade, especially at 
greater than 10% and less than -10%.

Table 2: Fitted distribution parameters for GPS data by time of day.

AM GPS data

Grade Bin Fitted 
Distribution

Parameter

α β γ δ ζ

G>10% Wake by 1812.8 44.495 6.5444 0.21417 23.952

10%≥G>8% Wake by 3918.1 45.133 12.632 0.00883 21.087

8%≥G>6% Wake by 2049.1 31.133 15.978 -0.02991 27.208

6%≥G>4% Wake by 1674.4 23.049 22.612 -0.09393 63.129

4%≥G>2% Wake by 953.73 14.211 30.87 -0.2763 63.977

2%≥G>0% Wake by 885 12.564 31.094 -0.26791 110.17

0>G≥-2% Wake by 971.05 14.091 32.851 -0.28817 125.15

-2%>G≥-4% Wake by 1187.4 16.079 28.734 -0.22635 109.55
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-4%>G≥-6% Wake by 1038.4 15.231 16.855 -0.05051 104.53

-6%>G≥-8% Wake by 752.01 11.928 9.6629 0.06215 31.447

-8%>G≥-10% Wake by 487.88 11.909 8.3697 -0.12383 39.347

G<-10% Wake by 516.33 11.314 5.504 -0.15718 68.561

Mid-day GPS data

Grade Bin Fitted Distribution Parameter

α (k) β(σ) γ(μ) δ ζ

G>10% Wake by 1655.2 25.157 11.719 0.18276 0

10%≥G>8% Wake by 411.8 14.837 22.749 -0.15493 0

8%≥G>6% Wake by 4743.4 33.299 43.291 -0.3666 22.441

6%≥G>4% Wake by 1098.3 13.502 37.029 -0.35367 42.907

4%≥G>2% Generalized 
Logistic -0.08148 15.335 172.4 N/A N/A

2%≥G>0% Generalized 
Logistic -0.07578 15.381 242.37 N/A N/A

0>G≥-2% Generalized 
Logistic -0.0647 15.894 214.5 N/A N/A

-2%>G≥-4% Generalized 
Logistic -0.06568 16.251 188.96 N/A N/A

-4%>G≥-6% Wake by 635.37 10.769 33.99 -0.35385 32.237

-6%>G≥-8% Wake by 511.49 6.0815 18.052 0.02404 -3.2467

-8%>G≥-10% Wake by 1292 10.956 7.679 0.20033 -30.193

G<-10% Wake by 678.85 8.4462 1.1275 0.64534 -17.055

PM GPS data

Grade Bin Fitted Distribution Parameter

α β γ δ ζ

G>10% Wake by 0.075895 3200.8 5.6886 0.22211 -2306.7

10%≥G>8% Wake by 1342.6 27.005 12.849 0.08707 14.077

8%≥G>6% Wake by 1547.3 20.911 13.403 0.10426 9.4477

6%≥G>4% Wake by 1364.9 18.086 21.67 -0.08502 83.809

4%≥G>2% Wake by 937.88 13.401 29.947 -0.28075 90.507

2%≥G>0% Wake by 822.14 11.995 29.629 -0.26248 121.05

0>G≥-2% Wake by 937.78 13.101 30.497 -0.27975 116.21

-2%>G≥-4% Wake by 1525.8 17.755 27.359 -0.22625 101.88

-4%>G≥-6% Wake by 833.44 12.634 13.092 0.05927 50.451

-6%>G≥-8% Wake by 793.26 12.554 9.6325 0.09337 39.697

-8%>G≥-10% Wake by 1409.2 16.678 8.3519 0.04483 44.111

G<-10% Wake by 790.79 13.665 3.8439 0.01387 84.91

For the mid- day datasets, the Wake by distribution does not 
fit best for smaller grades including 0 to 2%, 2% to 4%, -2% to 0 
and -4% to -2% bins. Instead, the generalized logistic distribution 
fits the data better and the P-P plots are almost perfect straight 
lines. Comparing to the fit from mid- day datasets as shown 
in Figure 2, more noise was observed on the comparison of 
histograms and PDF and the P-P plots of the peak-hour datasets 

in Figures 1 & 3. This noise maybe introduced by the relevantly 
large speed variations during peak hours. K-S test results show 
that all samples follow a specific distribution; therefore the entire 
null hypothesis is accepted. Consequently, the selection of fitted 
distribution is based on the comparisons of PDFs, P-P plots and 
the K-S tests. The fitted parameters by grade and time of day are 
listed in Table 2.

http://dx.doi.org/10.19080/IJESNR.2017.07.555721


How to cite this article: Zhuo Y, Heng W, Hao L, Ting Z, Zhixia Li. Incorporating Local Road Grades and Times-of-Day Traffic into Vehicle Specific Power 
Profiling for Urban Freeway Vehicle Emission Estimation. Int J Environ Sci Nat Res. 2017; 7(5): 555721. DOI: 10.19080/IJESNR.2017.07.555721.0122

International Journal of Environmental Sciences & Natural Resources

Figure 1: VSP distribution fitting on AM GPS data by freeway grades.
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Figure 2: VSP distribution fitting on Mid-day GPS data by freeway grades.
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Figure 3 : VSP distributions fitting on PM GPS data by freeway grades.

Conclusion and Future Research
The paper presents an approach to incorporate freeway 

grade into the current VSP profiling study. Samples collected 

from the study site fit into a specific distribution function, i.e. the 
generalized logistic or Wake by distribution, which is expected 
to use the function to determine the MOVES operating mode 
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distribution empirically for emission and energy consumption 
modelling. The findings of this research can be summarized into 
the following:

a. There is a strong connection between VSP distribution 
and freeway grade. 

b. The sample distribution of VSP can be well presented at 
lower grade bins such as -4% to 4%. However, the goodness of 
fit declines when the grade increases or decrease to a larger 
number.

c. Wake by distribution is able to capture most distribution 
characteristics of VSP at all grade bins in a higher speed 
variation traffic condition, while, the generalized logistic 
distribution fits the sample data better at smaller grade bins 
ranging between -4% and 4%when there is less variation in 
vehicle speeds. 

d. The speed variation plays an important role in 
determining the VSP distribution. Larger speed variation 
corresponding to more congested traffic results in a less 
randomized distribution.

e. The speed variation is a contributing factor distinguishing 
the distributions of AM, PM and Mid-day datasets.

The current practice in mobile source emissions modelling 
suggests significance of using second-by-second vehicle operation 
data to generate an accurate estimate of emissions for the 
transportation network. A better understanding and profiling 
of vehicle VSP distribution provided by the paper can certainly 
help to obtain more accurate modelling results. In addition, the 
findings provide good references for preparing operating mode 
distribution inputs for the MOVES model, since the distribution 
function can be used to generate and validate simulation results, 
the study. For our future research, it would be interesting to 
examine the grade-specific VSP distributions for other roadway 
types, such as arterials and local streets. In addition, correlating 
the emission rates with grade-specific VSP distributions would 
be an improvement to our study and vehicle emission and 
consumption modelling.
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