Research Article Volume 9 Issue 5 - April 2018 DOI: 10.19080/IJESNR.2018.09.555772 Int J Environ Sci Nat Res Copyright © All rights are reserved by Muhammad Faheem Jan # Phenology, Growth, Yield and Yield Components of Maize (zea mays L) Hybrids to Different Levels of Mineral Potassium under Semiarid Climate Muhammad Faheem Jan¹*, Waqas Liaqat¹, Haseeb Ahmad¹, Muhammad Dawood Ahmadzai1 and Wazir Rehan² ¹The University of Agriculture, Peshawar, Pakistan ²Agriculture Research Institute, Tarnab, Peshawar, Pakistan Submission: March 30, 2018; Published: April 11, 2018 *Corresponding author: Muhammad Faheem Jan, Department of Agronomy, Faculty of Crop Production, The University of Agriculture Peshawar, Pakistan, Email: mfaheemjan366@gmail.com #### **Abstract** An experiment was conducted at Agronomy Research Farm of The University of Agriculture Peshawar during summer 2016. Hybrids (WS-666, SB-92K97, and SB-909) and Potassium (K) levels $(0, 40, 80, 120, \text{ and } 160\text{kg ha}^{-1})$ laid out in randomized complete block design with split plot arrangement. Hybrids were allotted to main plots and potassium levels to subplots. Sowing was performed on 10 July. Each experimental unit was $3\text{m} \times 4.2\text{m}$ accommodating six rows at 0.70m distance from each other. All standard agronomic practices were constantly applied for each experimental unit. Hybrids and potassium levels significantly ($P \le 0.05$) affected crop phenology (days to tasseling, silking, and maturity), growth (plant height) and yield traits (grains ear⁻¹, thousand grain weight), biological and grain yield. Maize hybrids showed significant variation in phenology, growth and yield traits. As level of K increased from 0 to 160kgha^{-1} days to tasseling, silking and maturity decreased accordingly and more days for these traits were recorded in control plots. Similarly, with increase in K level plant height, grains ear⁻¹, thousand grain weight, biological yield and grain yield also increased up to 160kgha^{-1} which showed a non-significant difference from 120kgha^{-1} K. The study concludes that sowing of maize hybrid SB-92K97 with application of K at the rate of 120kgha^{-1} gives higher maize return in terms of yield. Keywords: Sulphate of Potash; Hybrids; Plant height; Grains ear-1; Thousand grain weight ### Introduction Pakistani soils are deficient in nitrogen and phosphorus in comparison to potassium (K). However, K application is still required in some places. Potassium reserves in Pakistani soils are decreasing day by day due to less or no application of potassium to the crops/soils [1]. Responses of cultivars are different to potassium (K), because of differences in their mode of uptake of nutrients, translocation, accumulation, growth and utilization [2]. Potassium use efficiency of different cultivars varies which reduce cost of inputs and conserve environment [3,4]. Greater plasticity [5], higher grain yield and harvest index stability are the characteristics of hybrids. The characteristics of hybrids are due to their genetic yield improvement attributes. Different genotypes have different potassium uptake and use efficiencies [6]. Hybrids have greater potassium uptake which resulted in higher grain yield. Variation in grain yield among hybrids is due to many physiological aspects which can genetically lead to the overall variability in yield [3]. Potassium (K) plays a vital role in life cycle of a crop and performed an energetic role in plant growth and development [7]. K increases leaf area [8-10], increases resistance to diseases and improves quality of crops [11], plant height [12,13], enhances crop growth rate [14], net assimilation rate [15], increase ear length [16] and increases grain yield [17,18]. K increases enzymes performance and photosynthesis [19], carbohydrates and protein synthesis [20]. K helps in energy metabolism, physiological processes such as xylem and phloem transport, uptake of nutrients, and osmoregulation [21]. The present research was therefore conducted to identify various maize hybrids for their yield at various level of potassium. The study aimed to find out optimum level of potassium for a suitable maize hybrid to achieve higher maize yield. #### **Materials and Methods** To study the response of various maize hybrids against different potassium levels, an experiment was conducted at Agronomy Research Farm of The University of Agriculture Peshawar during summer 2016. The experimental farm is located at 34.01° N latitude, 71.35° E longitude, at an altitude of 350m above sea level in Peshawar valley. Peshawar (34.0167° N and 71.5833° E) is located about 1600 km North of the Indian Ocean and has continental type of climate. The experiment was ## **International Journal of Environmental Sciences & Natural Resources** laid out in randomized complete block design with split plot arrangement carrying three replications. Hybrids (WS-666, SB-92K97 and SB-909) were allotted to main plots and potassium having five levels (0,40,80,120 and 160kgha⁻¹) were allotted to subplots. Potassium was applied as sulphate of potash. A subplot size of 3mx4.2m having 6 rows equally spaced at 0.70m apart from one another was used. Days to tasseling and silking were recorded when 80% plants produced tassels/silks in each subplot. Maturity was recorded when 80% plants get matured in each subplot. The maturity stage was determined when grains showed a black scar at their base. Plant height of five random plants was measured from base to the tip including tassels with the help of a meter rod and then was averaged for a single plant height data. After harvesting five ears were randomly selected from each subplot. Grains in each ear were counted manually and were averaged. After threshing, thousand clean grains from each experimental unit were taken and weighed on electronic balance for 1000 grain weight determination. At harvest maturity four central rows in each subplot were harvested, sun dried for 5 days and was weighed for biological yield and the data was then converted into kg ha⁻¹. Ears were detached, dehusked and shelled from sample taken for grain yield. Grain yield was determined from these ears and were then converted into kg ha⁻¹. The collected data was analyzed by analysis of variance technique as recommended for randomized complete block design with split plot arrangement. Means were compared upon significant F-test through least significant difference test [22] Table 1. Table 1: Phenology and productivity response of maize genotypes to different levels of mineral potassium under Semiarid Climate. | Plant | | | | | | | | | |---|-------------------|-----------------|---------------------|-------------|-------------------------|---------------------------|---|---------------------------------------| | Treatment | Days to tasseling | Days to silking | Days to
maturity | height (cm) | Grains ear ¹ | 1000 grains
weight (g) | Biological
yield (Kg
ha ⁻¹) | Grain yield
(Kg ha ⁻¹) | | Hybrids | | | | | | | | | | WS-666 | 56 c | 59 c | 95 c | 212 с | 420 c | 289 с | 12750 с | 3861 c | | SB92k97 | 59 a | 62 a | 100 a | 232 a | 432 b | 327 a | 14796 a | 4787 a | | SB909 | 57 b | 61 b | 97 b | 224 b | 446 a | 306 b | 13858 b | 4448 b | | LSD (0.05) | 1.05 | 0.79 | 1.95 | 8 | 11.29 | 16.28 | 714.22 | 249.1 | | Potassium
levels (Kg
ha ⁻¹) | | | | | | | | | | 0 | 61 a | 65 a | 101 a | 199 d | 406 d | 258 d | 11359 d | 3779 d | | 40 | 59 b | 63 b | 99 b | 211 с | 418 c | 286 с | 12788 с | 4038 c | | 80 | 57 с | 61 c | 97 c | 226 b | 432 b | 311 b | 13666 b | 4388 b | | 120 | 56 d | 59 d | 95 d | 238 a | 450 a | 342 a | 15646 a | 4694 a | | 160 | 55 d | 58 d | 94 d | 240 a | 457 a | 340 a | 16203 a | 4928 a | | LSD(0.05) | 0.92 | 1.25 | 1.67 | 7.74 | 8.63 | 7.39 | 626.87 | 144.79 | | H x K
interaction | ns Same letter(s) in a column are statistically similar at 5% level of significance NS = Non- significant LSD= Least significant difference #### **Results and Discussion** Crop phenology plays an important role and contributes a lot to the yield of crop. Different hybrids and potassium levels had significantly affected the various phonological parameters of maize crop. #### Days to Tasseling, Silking and Physiological Maturity Data regarding crop growth phenology (days to tasseling, silking and maturity) showed that maize hybrids and potassium levels had a significant effect on days to tasseling, silking and maturity of maize. Among hybrids maximum days to tasseling, silking and maturity was recorded for SB-92K97 followed by SB-909 while minimum days to tasseling, silking and maturity was recorded for WS-666. Difference in hybrids regarding phenology might be due to their variation in genetic constitution [23,24]. Reported that variation in tasseling, silking and physiological maturity period of maize hybrids is due to its genetic makeup. The shorter season hybrids took less time to tasseling, silking and physiological maturity than did the longer season hybrids. Mean across hybrids data showed that as potassium levels decrease days to tasseling, silking and physiological maturity accordingly. Early tasseling, silking, and physiological maturity was recorded in plots which was treated with K 160kgha⁻¹ which was non-significant from 120kgha⁻¹ K. while delayed tasseling, silking and physiological maturity was recorded in control plots [25]. Reported that increase in potassium levels resulted in earlier in tasseling, silking and physiological maturity. #### Plant Height (cm) Among hybrids highest plant height was recorded for SB-92K97 followed by SB-909 while lowest plant height was recorded for WS-666. Variation in plant height of maize hybrids could be due to difference in their genetic makeup as same result is also reported by [26]. Mean values indicated that as level of potassium increased plant height increased and attained maximum value at 160kgha⁻¹ potassium which was statistically non-significant from 120kgha⁻¹ K. Similar results are reported by [12,27]. They reported that application of potassium significantly increased plant height. #### Grain Ear-1 Mean values across hybrids showed that SB-909 produced highest grains ear-1 followed by SB-92K97 while lowest grains ear-1 was recorded for WS-666 [28,23]. Reported that difference in grains ear-1 among maize hybrids might be due to the variation in their ear length, ear diameter, and grain size. In potassium levels highest grains ear-1 was recorded for 160kgha⁻¹ K which was statistically non-significant from 120kgha⁻¹ followed by 80kgha⁻¹ K. Lowest grains ear-1 was recorded in control plots [29,30]. Reported that application of potassium significantly increase grain ear-1 of maize. #### Thousand Grains Weight (g) Planned mean comparison of hybrids showed that highest thousand grain weight was recorded for SB-92K97 followed by SB-909 while lowest thousand grain weight was recorded for WS-666. Similar results were also reported by [31,32]. They reported that differences in thousand grain weight among hybrids could be due to their genetic potential. Mean values across potassium levels indicated that highest thousand grain weight was recorded in plots which received potassium 160kgha⁻¹ which was statistically non-significant from 120kgha⁻¹ potassium plots. Lowest thousand grains weight was recorded in control plots [29,30]. Reported that potassium application significantly increase 1000 grains weight as compared to control plots. Our result also agreement with [33] registered maximum grain weight for highest level of K and minimum for control plots. # Biological Yield (Kg ha-1) Biological yield was significantly affected by hybrids and potassium levels. Among hybrids highest biological yield was recorded for SB-92K97 hybrid which was significantly different from other hybrids [34]. Reported that maize hybrids significantly differed for all parameters including biological yield due to their genetic potential. Mean values across potassium levels showed that highest biological yield was recorded in plots which received potassium 160kgha⁻¹ which was statistically nonsignificant from 120kgha⁻¹ potassium plots. Lowest biological yield was recorded in control plots [17,13]. Reported that application of potassium significantly increased biological yield. # Grain Yield (Kg ha⁻¹) Statistical analysis showed that grain yield was significantly affected by hybrids and potassium levels. However, interaction of hybrids and potassium levels had a non- significant effect on grain yield of maize crop Highest grain yield was recorded for SB-92K97 hybrid which was significantly different from other hybrids [3,17] concluded that different hybrids react differently for grain yield due to their genetic makeup and potential expressed in terms of difference in ear plant-1, number of grains cob-1, 1000 grains weight. In potassium levels highest grain yield was recorded for 160kgha⁻¹ K which was statistically non-significant from 120kgha⁻¹ followed by 80kgha⁻¹ K. Lowest grain yield was recorded in control plots [17,18]. Reported that application of potassium significantly increase grain yield. #### **Conclusion and Recommendations** In the light of the performed experiment it was concluded that among maize hybrids, SB-92K97 produced higher biological yield and grain yield followed by SB-909 and WS-666. Similarly, higher biological and grain yield was obtained with the application of K at the rate of 160kgha⁻¹ which was non-significant from 120kgha⁻¹ K. Thus, among the selected maize hybrids SB92K97 is recommended along with potassium application at the rate of 120kgha⁻¹ for yield. #### References - 1. Ahmad N, Rashid M, Vaes AG (2003) Fertilizers and their use in Pakistan. Extension Bulletin NDFC Islamabad p. 112. - 2. Minjian C, Haiqui Y, Hongkui, Chungi J (2007) Difference in tolerance to potassium deficiency between maize inbred lines. Plant Prod Sci 10(1): 42-46. - 3. Rengel Z, Damon PM (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant 133(4): 624-636. - 4. Baligar VC, Fageria NK, Helton ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32(1): 921-950. - Sparlangue T, Andrade FH, Calvino PA, Larry C (2007) Why do maize hybrids respond differently to variations in plant density. Agron J 99(4): 984-991. - Allan DL, Rehm GW, Oldham JL (1998) Root system interactions with potassium management in corn. In: Oosterhuis DM and GA Berkowitz. Frontiers in potassium nutrition: New perspectives on the effects of potassium on physiology of plants. Potash and phosphate institute, Saskatoon Canada. - Bukhsh MAAHA, Ahmad R, Iqbal J, Maqbool M M, Ali A, et al. (2012) Nutritional and physiological significance of potassium application in maize hybrid crop production. Pak J Nutr 11(2): 187-202. - 8. Aslam M, Zamir MSI, Afzal I, Yaseen M (2013) Morphological and physiological response of maize hybrids to potassium application under drought stress. J Agric Res 51(4): 443-454. - 9. Meille LJ, Pellerin S (2008) Shoot and root growth of hydroponic maize as influenced by K deficiency. Plant Soil 304(2): 157-168. - Rasheed M (2002) Biological response of hybrid maize to plantation methods and nutrient management. Phd Dissertation, Dept Agron Univ Agric Faisalabad, Pakistan. # **International Journal of Environmental Sciences & Natural Resources** - Irfanullah, Akbar H, Ali A, Hussain I, Khan MW, et al. (2017) Yield and yield attributes of maize (zea mays l.) as affected by detasseling and potassium fertilization. Pure Appl Biol 6(3): 958-964. - 12. Pandey RK, Maranville JW, Admou A (2000) Deficit irrigation and nitrogen effects on maize in a Sahelian environment. Grain yield and yield components. Agric Water Manage 46(1): 1-13. - Mastoi GS, Hassan ZU, Rajpar I, Shah AN, Qureshi SA (2013) Response of field grown hybrids maize to intergrated use of inorganic and organic potassium fertilizer. Pak J Engg Agric Vet Sci 29(2): 126136. - Cassman KG, Kerby TA, Roberts BA, Bryant DC, Brouder SM (1989) Differential response of two cotton hybrids to fertilizer and soil potassium. Agron J 81: 870-876. - Akhtar M, Ahmad S, Mohsin S, Mehmood T (1999) Interactive effect of phosphorous and potassium nutrition on the growth and yield of hybrid maize. Pak J Biol Sci 2(1): 240-241. - 16. Amanullah, Iqbal A, Irfanullah, Hidayat Z (2016) Potassium management for improving growth and grain yield of maize (Zea mays L) under moisture stress condition. Sci reports 6: 1-11. - Pettigrew WT (2008) Potassium influence on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133(4): 670-681. - Ijaz M, Mahmood A, Ullah H (2014) Response of maize hybrid (Zea mays L.) to different levels of potassium. Agric Res Commun 1(1): 30-38 - 19. Van BJM, Hunt SJ (1998) Better crops with plant food. In Potassium: Functions of potassium 82(3): 4-5. - 20. Patil RB (2011) Role of potassium humate on growth and yield of soybean and black gram. Int J Phar Biol sci 2(1): 242-246. - 21. Thomas TC, Cohrane TA (2009) Vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. Plant Signal Behav 4(3): 240-243. - 22. Jan MT, Shah P, Hollington PA, Khan MJ, Sohail Q (2009) Agriculture Research: Design and Analysis, A monograph. Agric Univ Pesh Pak. - Luque SF, Cirilo AG, Otegui ME (2006) Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crops Res 95(3): 383-397. - 24. Gozubenli H, Ulger AC, Sener O (2001) The effect of different nitrogen doses on grain yield and and yield related characters of some maize genotypes grown as second crop. J Agric Fac 16: 39-48. - 25. Asif M, Amanullah, Anwar M (2007) Phenology, leaf area and yield of spring maize (Cv. Azam) as affected by levels and timings of potassium application. J World ApplSci 2(4): 299-303. - 26. Hussain N, Zaman QU, Nadeem MA, Aziz A (2010) Response of maize cultivars under agro ecological conditions of dera ismail khan. J Agric Res 48(1): 59-63. - 27. Stone PJ, Wilson DR, Jamieson PD, Gillespie RN (2001) Water deficit effects on sweet maize canopy development. Aust J Agric Res 52(1): 115-126. - 28. Liu W, Tollenaar M, Stewart G, Deen W (2004) Response of corn grain yield to spatial and temporal variability in emergence. Crop Sci 44(3): 847-854. - 29. Brar MS, Singh R (1995) Potassium depletion and effects of K fertilization on soil K content, growth and K concentration of maize crop. J Pot Res 11(2): 154-159. - Davis JG, Walker ME, Parker MB, Mullinix B (1996) Long term phosphorus and potassium application to corn on coastal Plain Soils. J Prod Agric 9(1): 88-94. - 31. Sener O, Gouzubenli H, Konuskan O, Kilinic M (2004) The effects of intra row spacing on the grain and some agronomic characteristics of maize hybrids. Asian J Plant Sci 3(4): 429-432. - 32. Varga B, Svecnjak ZM, Knezevic, Grbessa D (2004) Performance of prolific and non prolific maize hybrids under reduced-input and high-input cropping systems. Field Crops Res 90(3): 203-212. - 33. Sadiq G, Khan AA, Inamullah, Rab A, Fayyaz H, et al. (2017) Impact of phosphorus and potassium levels on yield and yield components of maize. Pure Appl Biol 6(3): 1071-1078. - 34. Ali T, Anwar S, Shah WA, Ahmad B (2004) Response of maize hybrids to various levels of potassium and irrigation frequencies. Agron J 3: 201-207 This work is licensed under Creative Commons Attribution 4.0 License DOI: 10.19080/IJESNR.2018.09.555772 # Your next submission with Juniper Publishers will reach you the below assets - · Quality Editorial service - Swift Peer Review - Reprints availability - E-prints Service - Manuscript Podcast for convenient understanding - · Global attainment for your research - Manuscript accessibility in different formats (Pdf, E-pub, Full Text, Audio)Unceasing customer service Track the below URL for one-step submission https://juniperpublishers.com/online-submission.php