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Introduction
Air pollution in urban areas has become a serious issue for 

developed as well as developing countries. Air pollution leads to 
both acute and chronic health effects [1,2]. Several studies have 
been conducted around the world on association of deteriorating 
air quality and daily mortality and morbidity [3-5]; therefore, 
control of air pollution is required. Among the harmful air 
pollutants, ozone has detrimental effects on human being as 
well as on vegetation. The short-term acute effects of ozone 
exposure include pulmonary dysfunction, irritation in airways 
and inflammation in the air passage [6]. Long-term exposure to 
humans causes worsening of previous respiratory diseases like 
asthma, dry throat, severe inflammation, persistent coughing 
and chest pain [7,8]. The critical level of O3 for human exposure is 
90ppb for one hour according to NAAQS, CPCB, India [9] and equal 
to or greater than 70ppb for eight hours according to NAAQS, EPA 
[10].

Ozone levels at a site are influenced by precursor levels and 
meteorological conditions of the site. Although, the background 
levels of ozone are in the range of 20-35ppb but levels higher than 
150ppb are also observed at various sites [11,12]. Several factors 
influence episodic levels of ozone that include high precursor lev-
els, favourable meteorological conditions and poor circulation of 
air-masses. Therefore, if it is possible to predict these events one 
or two days in advance, it will be beneficial to human beings. The 
short-term forecasting is a significant step to take preventive ac-
tions during episodic events. Through these short-term forecasts, 
we can alert sensitive group of people (children, asthmatics and 
elderly people) and reduce the need of medication. Prediction of 
high ozone episodes using mathematical tools is very useful to 
provide early warning to the population. However, modelling of 
ozone levels is a complicated task as ozone has complex relation-
ships with precursors and meteorological parameters [13].
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Various air quality agencies have been working around the 
world to monitor air pollutants to forecast episodic events and 
to assess the impact of reduction in pollutants emission. To ful-
fil all these criteria and forecast pollutant levels several models 
have been employed. These models can be classified into two 
categories deterministic and statistical. Deterministic models 
are termed as cause and effect models; involve complex chemical 
reactions, transport and dispersion processes. These models are 
time consuming and need a large amount of dataset [14]. Howev-
er, statistical models are quite simple and can be applied on real 
time data. In addition, deterministic models are suitable for large 
study areas and require accurate information of emission levels, 
transportation processes and meteorological conditions. Howev-
er, statistical models can identify relationship of output variable 
with input variables without applying cause and effect analysis. 

During the last decade several researchers have used various 
statistical techniques to analyze and forecast ozone levels includ-
ing graphical analysis, fuzzy logics, multiple linear regression 
(MLR), principal component analysis (PCA), artificial neural net-
works (ANN) and combination of various methods [15-25]. MLR 
is a widely used statistical method in various fields like psycholo-
gy, biology, medicine and environment [22,26,27]. PCA is consid-
ered as a useful tool to determine similarity in variables [23]. ANN 
has been suggested as the most appropriate statistical method 
for predicting the time series of different pollutants [28]. Several 
studies have used ANN as a viable approach for forecasting of O3, 
PM10, NO2, and NOx at different sites around the world [29,30]. 

In the present study, four models were constructed using 
MLR, PCR, ANN and PCANN. To model hourly ozone levels of next 
day, precursor concentrations (NO2 and CO), ozone levels and 
meteorological parameters viz. temperature (T), relative humid-
ity (RH), solar radiation (SR), solar radiation duration (SRD) and 
wind speed (WS) of previous day were used as input variables. 

Methodology
Study site and data 

Trace gases (O3, NO2 and CO) measurements were carried out 
at the campus of Dayalbagh Educational Institute (semi-urban 
site), Agra (27°10´ N, 78°05´ E) located in North-central part of 
India. The location of sampling site in Agra is shown in Figure 1. 
The detailed description of the site has been discussed elsewhere 
[12]. O3, NOx and CO measurements were carried out using ozone 
(Thermo Scientific 49i), NOx (Thermo Scientific 42i) and CO ana-
lyzers (Teledyne T300), respectively. The ozone analyzer works 
on the principle of Lambert - Beer’s law. The ozone molecules 
show peak absorption at 254nm. NOx analyzer works on the prin-
ciple of chemiluminescence by NO2 molecules which peak at near-
ly 630nm. The CO analyzer based on absorption of infra-red (IR) 
radiations at 4.67μm by CO molecules. The details on principles 
of these analyzers have been discussed elsewhere [12,31,32]. The 
detection limit of O3, NOx, and CO analyzer was 1.0ppb, 0.4ppb and 
< 0.04ppm respectively. Zero and span calibrations of these ana-
lyzers were done on a weekly basis using zero air generator and 
dynamic gas calibrator (Teledyne T700).

Figure 1: Scatter plot of hourly ozone concentration at the study site (Left panel) and location of study site (Right Panel).

Meteorological parameters viz. temperature, relative humidi-
ty, solar radiation, solar radiation duration and wind speed were 
recorded at the sampling site using Automatic Weather Station 
WM271 Data Logger at one-hour interval. 

Models 
Four models were constructed using MLR, PCR, ANN and 

PCANN. Statistical Packages for Social Sciences 16.0 (SPSS 16.0) 
was used for MLR and PCR while MATLAB R2013a was used for 
ANN analysis.

Model 1: Multiple Linear Regression (MLR)

Multiple linear regression (MLR) establishes a linear relation-
ship between a dependent variable and more than one indepen-

dent variables [33]. The general equation of MLR can be expressed 
by the formula given below:

1

n

o i i
i

Y X Eβ β
=

= + +∑

where, 

Y = Response variable (O3(d+1))

βo = Constant

βi= Coefficients of explanatory variables

Xi= explanatory variables viz. O3, NO2, CO, temperature, rela-
tive humidity, solar radiation, solar radiation duration and wind 
speed.
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E= Error associated with the model regression. 

MLR depends on linear and additive coalition of independent 
explanatory variables. MLR is based on following assumptions: 

(i)    The variables should be independent in nature and 

(ii)  Normal distribution of the residual errors. Normal distribution 
is associated with zero mean and constant variance [34]. However, 
MLR is often associated with multicollinearity which indicates 
dependence of two or more explanatory variables on one another. 
It can be determined using tolerance value; a tolerance of less 
than or equals to 0.5 indicates multicollinearity is a problem, a 
tolerance of 0.30 or less indicates a serious multicollinearity 
problem [35]. 

Model 2: Principal Component Regression (PCR)

PCR is a combined method of PCA and MLR. In this method 
principal components generated through PCA are used as input 
variables to reduce multicollinearity and to make model simple. 
As these selected PCs were associated with high loadings and can 
explain majority of original variables, therefore they are ideal for 
the use in MLR [36].

Principal Component Analysis (PCA): Principal Component 
Analysis (PCA) is a useful multivariate statistical method to ex-
plain the variance of a complex set of correlated variables. PCA 
transforms them into small number of independent variables 
termed as principal components (PCs) [37]. PCs are linear com-
bination of original variables and they are orthogonal to each oth-
er [16]. PCA has ability to identify most significant variable and 
can omit least significant variables without affecting the original 
data [38]. In PCA, Bartlett’s test of sphericity is applied to check 
whether variables are correlated to each other or not. Kaiser-Mey-
er-Olkin (KMO) test verifies the applicability of PCA on the dataset 
and KMO value >0.5 indicates suitability of data for PCA. Varimax 
rotation was applied which makes the model simple by making 
small loadings smaller and large loadings larger and it assures 
that each variable has maximum correlation with only one prin-
cipal component and minimally correlated with other variables 
[37]. 

Model 3: Artificial Neural Network (ANN)

As the relationship of O3 with its precursors and meteorolog-
ical variables is non-linear in nature therefore, nonlinear models 
like ANN can predict O3 levels efficiently as compared to linear 
models [21]. The feedforward backpropagation network is com-
monly used to resolve nonlinear problems [38]. This network 
consists of three layers: input layer, hidden layer and output lay-
er. These three layers remain connected to each other through 
neurons or nodes, these neurons can exchange information with 
all other neurons of layers. The output value of a neuron is ob-
tained by applying an activation function viz. sigmoid, hyperbolic 
tangential or linear. Earlier studies have suggested that there is 
no strict rule to design the architecture of network [39,40]. The 
number of neurons in input layer is equal to the number of input 

variables. The most common problems in designing architecture 
of hidden layer includes number of neurons and suitable activa-
tion function. The optimum number of neurons in hidden layer is 
required because small number of neurons may lead to underfit-
ting while large number of neurons may lead to overfitting of the 
model. According to Yang et al. [41], number of neurons in hidden 
layer can be determined by using formula:

2 1h in n= +

where, nh is number of neurons in hidden layer while ni is 
number of neurons in input layer. In the present study, linear 
(purelin) and hyperbolic tangent sigmoid (transig) activation 
functions were used [39,42]. The overfitting problem in ANN was 
avoided using cross-validation test which involves data testing on 
one subgroup and its validation on the other [40].

Model 4: Principal Component based Artificial Neural 
Network (PC-ANN)

For PC-ANN model, principal components are used as input 
variables instead of original variables. Therefore, the model has 
less complex architecture and might be more efficient in predict-
ing ozone levels. 

Performance Indicators
The errors and accuracies of developed models can be evalu-

ated using performance indicators like NAE (Normalized Absolute 
Error), RMSE (Root Mean Square Error), IA (Index of Agreement), 
MBE (Mean Biased Error) and coefficient of determination (R2) 
[34].

a)	 NAE: Normalized absolute error is summation of differ-
ence of predicted and measured value divided by summation of 
observed values.
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b)	 RMSE: Root mean square error indicates success of pre-
diction of models. RMSE is defined by the formula:
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c)	 IA: Index of Agreement measures how accurately mod-
els are working and given by the formula [43].
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IA values have a range of 0 to 1. IA equals to 0 indicates that 
predicted and observed values have no agreement while IA equals 
to 1 indicates that there is perfect correlation between observed 
and predicted values.

d)	 MBE: Mean biased error indicates degree of over or un-
der prediction. MBE value > 0 is an indicator of over prediction 
while < 0 value is an indicator of under prediction. 
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  -MBE P O=
where, Oi = Observed concentration, Pi = Predicted concentra-

tion, O = mean of observed concentration, P  = mean of predicted 
concentration, n = number of data points.

In this study datasets of 2014-2015 were used for model’s 
construction (data for those days when value of any variable was 
missing for more than six hours was removed). Therefore, 2400 
datasets were selected for the study. The complete dataset was 
normalized before using it in different models. The efficiencies of 
all the models were also checked by using an unknown dataset 
which was not included in the construction of these models. The 
unknown dataset was around 25% of the total data used. 

Results and Discussion
Table 1: Comparison of O3, NOx and CO levels at the study site with 
other sites in India.

Study Site O3 (ppb) CO (ppb) NOx (ppb) Reference

Pantnagar 
(Semi-ur-

ban)
25 ± 19.2 348.5± 76.7 - Ojha et al. 

[49]

Dibrugarh 
(Semi-ur-

ban)
17.3-42.9 617±33 13.5±17.2 Bhuyan et 

al. [44]

Anantapur 
(Rural) 35.1 ± 3.1 - 5.2 ±0.6 Gopal et al. 

[46]

Nainital 
(High alti-

tude)
42.0 ± 16.0 215.2 ± 147 1.5±1.5 Sarangi et 

al. [48]

Dariyapur, 
Delhi (Ru-

ral)
39.4 - 7.3 Kumar et al. 

[47]

IITM, New 
Delhi (Ur-
ban back-
ground)

23.6 1970 29.3 Tiwari et al. 
[50]

Delhi (Ur-
ban) 29.5 ± 7.3 1820 ± 520 34.7 ± 11.2 Sharma et 

al. [51]

Udaipur 
(Campus) May-53 121-842 29-Mar Yadav et al. 

[45]

Dayal-
bagh, Agra 
(Semi-ur-

ban)

37.7 ± 23.4 273.3 ± 
306.5 16.4 ± 11.4 Present 

study

    8.2 ± 11.1 
(NO)  

    8.6 ± 5.2 
(NO2)  

The comparison of average concentration of O3, NOx and CO at 
the study site with other sites in India is shown in Table 1 [44,45]. 
The levels of O3 at the study site were moderate and comparable 
with a rural site (35.1 ± 3.5ppb) of Anantapur [46] and a rural 
site (39.4ppb) of Delhi [47] while lower (42.0 ± 16.0ppb) than a 
high-altitude site of Nainital [48]. The average O3 concentration at 
the study site was higher than a semi-urban site of Pantnagar [49], 
an urban background site of New Delhi [50] and an urban site of 
Delhi [51]. NOx levels were higher than a rural site of Anantapur, a 
rural site of Delhi, a high-altitude site of Nainital and a semi-urban 

site of Dibrugarh. However, CO levels at the study site were low-
er than other sites except high altitude site, Nainital. At the study 
site, hourly ozone levels frequently exceed air quality standards 
provided by CPCB, India (2009) (O3 > 90 ppb for one hour) and 
EPA (2015) (O3 levels ≥ 70 ppb for eight hours) (Figure 1). The 
days when ozone exceeds air quality standards may be termed as 
ozone episodes [12]. These high ozone episodes may cause detri-
mental effects on sensitive group of people and crops. 

Figure 2: Average diurnal variation of O3, CO, NO and NO2.

Ozone levels are significantly influenced by precursor levels, 
meteorological conditions and topography of the site as it is a sec-
ondary pollutant [52]. Figure 2 shows the diurnal pattern of ozone, 
NO, NO2 and CO. The average diurnal pattern of ozone was char-
acterized by minimum value of 17.9±9.7ppb during early morn-
ing hours (~7:00h), reached a maximum value of 53.7±24.9ppb 
during afternoon (~15:00h), remained steady until ~17:00h, and 
then decreased until next morning. The night time low levels of 
ozone can be attributed to absence of photochemical generation 
and titration with NO. The diurnal variation of ozone can be clas-
sified into four phases as shown in Figure 2. During the first phase 
(01:00-05:00h), there was a slow decrease in ozone and its pre-
cursor levels. The second phase lies in between 06:00h to 08:00h 
when ozone generation was inhibited by NO and NO2 generated 
from photolysis of night time accumulated NO3˙ and N2O5. The 
third phase was the photochemical generation of ozone during 
09:00 h to 17:00h and the rate of ozone formation was high during 
these hours. The last phase was post maximum phase which start-
ed after 17:00h. During this phase, levels of ozone fall as loss by 
NO, NO2 and deposition was fast in the descended boundary layer.

To find out the relationship of ozone with its precursors and 
meteorological parameters, Pearson correlation analysis was per-
formed. Table 2 shows results of correlation analysis among hour-
ly data of O3(d+1), O3, NO2, CO, T, RH, WS, SR and SRD. The next day 
hourly ozone concentration showed strong positive correlation 
with ozone concentration, temperature and solar radiation dura-
tion of previous day and strong negative correlation with relative 
humidity. The O3(d+1) levels also showed moderate positive cor-
relation with solar radiation and negative correlation with NO2. 
Significant positive correlation of ozone with temperature and 
solar radiation suggest role of photochemistry in surface ozone 
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formation. O3(d+1) showed negative correlation with its precursors 
NO2 and CO. The negative correlation with wind speed suggests 

that high wind speed causes dilution of air and may result in low 
levels of O3. 

Table 2: Pearson correlation analysis among various variables.

  O3(d+1) O3 NO2 CO T RH WS SR SRD

O3(d+1) 1 0.84* -0.42* -0.34* 0.62* -0.56* -0.28* 0.47* 0.52*

O3   1 -0.47* -0.37* 0.63* -0.57* -0.27* 0.46* 0.57*

NO2     1 0.53* -0.55* 0.15* -0.22* -0.16* 0.16*

CO       1 -0.32* 0.31* -0.12* -0.20* 0.26*

T         1 -0.65* -0.08 0.37* 0.32*

RH           1 0.19* -0.28* -0.32*

WS             1 -0.26* 0.25*

SR               1 0.08

SRD                 1

*-Correlation is significant at p<0.001
Table 3: Model summary for MLR and PCR.

Model R R2 Adjusted R2 Equation of Model

1 0.852 0.727 0.725 O3(d+1) = 47.69 +15.83 O3 +2.63 T +2.33 SR –1.37 WS –1.61 RH –0.04NO2

2 0.869 0.755 0.754 O3(d+1) = 47.68 –13.26 FS1 +8.96 FS2 –8.90 FS3 +7.31FS4

FS = Factor Scores.

Model 1: Multiple linear regression (MLR)
In the present study, stepwise multiple linear regression was 

used which can determine the contribution of different variables 
to predictive equation. The histogram plot for residuals was nor-
malized in nature. Model summary is shown in Table 3 which 
gives value of multiple correlation R, R2, adjusted R2 and equation 
of best fit model which has maximum R2. The R2 is also known as 
coefficient of determination which explains the fraction of vari-
ation in the dependent variable explained by overall regression 
model [53]. The higher value of R2 indicates that model fits well 
with data. R2 defines that variation of dependent variable is ex-
plained by all the independent variables, however, adjusted R2 is 
a measure of variation of dependent variable explained by only 
those independent variables that affect the dependent variable 
[20]. 

Figure 3: Regression analysis between observed and model 
predicted ozone levels for MLR.

In Table 3, coefficients used in MLR equation are for normal-

ized dataset which suggests that ozone levels of the next day are 
maximally influenced by previous day hourly ozone levels. In the 
regression equation CO and SRD were not included as predic-
tors by the model because their variation was not statistically 
significant (p>0.01). A significant positive regression coefficient 
(R=0.85) was observed between measured and modelled values 
as shown in Table 3 and Figure 3. The tolerance value was less 
than 0.5 for O3 (0.491), NO2 (0.482) and T (0.454).

Model 2: Principal component regression (PCR)
As discussed in introduction section that PCR is a combina-

tion of PCA and MLR, therefore, we first applied PCA on the whole 
dataset. PCA is useful for selecting variables for MLR [54]. The 
limitation of multicollinearity associated with MLR can be avoid-
ed using PCA.

Principal component analysis (PCA): The varimax rotation 
was applied and the main objective of PCA is to get small number 
of components which can explain maximum variation. Bartlett’s 
sphericity test was applied to verify the usability of PCA in the da-
ta-set used and it was significant (p < 0.001), therefore, the data is 
applicable for PCA. The KMO value was also greater than 0.5 which 
also indicates suitability of data for PCA. According to Kaiser crite-
rion, PCs with eigen value equal or greater than one is usually re-
tained for the analysis, however, Izenman [55] suggested that PCs 
with eigen value greater than or equal to 0.7 are also statistically 
significant. He et al. [56] also followed the similar criteria in their 
study. Following this criterion, four PCs were selected for the pres-
ent study (Table 4). Table 4 shows loadings associated with four 
PCs. The first four PCs explain 80.34% of variance. On first PC, 
O3, temperature and RH have significant loadings and it explains 
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24.43% of variation in independent variables. Second PC explains 
24.34% of variance and it is heavily loaded on NO2 and CO. The 
third PC is heavily loaded on wind speed and solar radiation; and 
explains 16.95% variance. The fourth PC has significant positive 
loading on solar radiation duration. As four principal components 
are selected for the study therefore corresponding four factor 
scores are also saved by the model which can be further utilized 
as input variables in MLR analysis [16,17]. Table 3 shows R, R2 and 
adjusted R2 which are better for Model 2 as compared to Model 1. 
The regression coefficient between observed and predicted value 
was 0.87 (Figure 4). 

Table 4: Rotated principal component loadings.

  PC1 PC2 PC3 PC4

O3 0.856 0.239 0.23 0.054

NO2 0.18 0.889 0.048 -0.021

CO 0.209 0.713 -0.118 0.231

T -0.774 -0.421 0.139 -0.006

RH 0.934 0.034 -0.122 0.001

WS 0.217 -0.407 -0.682 -0.171

SR -0.112 -0.28 0.844 0.012

SRD 0.019 0.148 0.085 0.954

% of Variance 24.43 24.34 16.95 14.62

Cumulative % 24.43 48.77 65.72 80.34

Initial Eigen Value 3.085 1.702 0.864 0.777

Figure 4: Regression analysis between observed and model 
predicted ozone levels for PCR.

Model 3: Artificial neural network (ANN)
Model 3 is a feedforward back-propagation ANN model which 

consists of three layers: input, hidden and output layer. The Lev-
enberg Marquardt backpropagation method was used for the 
model construction. There are eight input variables and one out-
put variable, therefore, eight and one neuron were selected in 
input and output layer, respectively. The number of neurons in 
hidden layer affects model’s efficiency far greater as compared to 
number of hidden layers [57]. Following the approach of Yang et 
al. [41] optimum number of neurons in hidden layer was 17 (ni = 

8). The model was optimized for best performance by using dif-
ferent numbers of neurons in hidden layer. Here, we are showing 
the results of model output for 5, 10, 15 and 17 neurons in hidden 
layer (Table 5). The ANN model with 15 neurons in hidden layer 
showed maximum correlation (R = 0.91) with the observed levels. 
This model was associated with minimum value of mean square 
error (MSE) (0.172), maximum number of epochs (12) and high-
est value of index of agreement (IA) (0.947). Therefore, the model 
with 15 neurons is considered as optimized model. Although the 
value of regression coefficient increases with further increase in 
number of hidden layer neurons (nh = 20, 25 and so on) but the 
error also increases. Figure 5 shows regression analysis between 
observed and model predicted ozone levels for training, testing 
and validation dataset. The whole dataset was partitioned into 
70% of training, 15% of validation and 15% of testing dataset. For 
training, validation and testing datasets regression coefficients 
were 0.91, 0.92 and 0.89, respectively. The overall regression co-
efficient was 0.91. 

Table 5: Summary of statistical parameters for different number of 
neurons in hidden layer of ANN model.

Parameter 5 Neurons 10 Neu-
rons

15 Neu-
rons 17 Neurons

Number of 
Epoch 7 4 12 7

Learning 
Rate 0.05 0.05 0.05 0.05

R 0.882 0.874 0.909 0.895

MSE 0.202 0.345 0.172 0.203

IA 0.935 0.927 0.947 0.941

Figure 5: Regression analysis between observed and model 
predicted ozone levels for ANN model.

Model 4: Principal component-based ANN model 
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(PCANN)

Figure 6: Schematic diagram for PC based ANN.

Figure 7: Regression analysis between observed and model 
predicted ozone for PCANN model.

Table 6: Summary of statistical parameters for different number of 
neurons in hidden layer of PCANN model.

Parameter 5 Neurons 7 Neurons 9 Neurons

Number of 
Epoch 6 24 15

Learning Rate 0.05 0.05 0.05

R 0.856 0.889 0.923

MSE 0.238 0.215 0.169

IA 0.918 0.931 0.957

The model 3 can be simpler and more efficient if principal 
components are used as input variables instead of all eight vari-
ables because PC based ANN model is devoid of multicollineari-
ty. The construction of model was initiated by the application of 
PCA analysis on input variable like model 2. Therefore, four prin-
cipal components were generated, and, on these PCs, ANN was 
applied. The basic structure of PC-ANN is shown in Figure 6. Fig-
ure 6 shows that eight variables were used to generate four PCs 
which can explain most of the variance in the original variables 
and were used as input variables in ANN. Therefore, input layer is 
consisted of four neurons and optimum number in hidden layer 
is 9 (2ni +1) [41]. The efficiency of the model was again checked 
by considering different number of neurons in hidden layer. Table 
6 shows variation in statistical parameters by taking 5, 7 and 9 
neurons in hidden layer. The transig and purelin activation func-
tion were used. The PCANN model with 9 neurons in hidden layer 

showed maximum correlation (R = 0.92) with the observed levels. 
This model was associated with minimum value of MSE (0.169) 
and the highest value of IA (0.957). For PCANN model, the dataset 
was partitioned into training (70%), validation (15%) and testing 
dataset (15%). The regression coefficients for training, validation 
and testing datasets were 0.89, 0.92 and 0.87. The overall regres-
sion coefficient was 0.92 (Figure 7). 

Figure 8 (a) shows time series of observed ozone levels and 
model predicted ozone levels during the study period while Fig-
ure 8 (b) shows diurnal variation of ozone only for few days to 
describe efficiency of various models in explaining the diurnal 
variation of ozone. As shown in Figure 8(b) most of the days MLR 
underestimates ozone levels during peak ozone hours while over-
estimates its levels during early morning and late-night hours. 
ANN and PCANN showed good agreement with observed data, 
however, extent of correlation is better for PCANN. On the other 
hand, all the models are not able to predict sudden rise in ozone 
levels. In the present study, other precursors of ozone like non-
methane hydrocarbons (NMHCs) and meteorological parameters 
like wind direction were not considered hence the efficiency of 
these models can be improved by using them as input variables. 
In addition, ozone levels are driven by complex set of chemical re-
actions therefore it is difficult to predict its exact concentrations. 

Figure 8: Diurnal variation of observed, MLR, PCR, ANN and 
PCANN modelled ozone levels (a) during complete study period 
(b) for few days.

Table 7: Performance indicators for various models.

Model NAE RMSE IA MBE

MLR 0.213 13.03 0.918 0.127

PCR 0.198 12.43 0.925 -0.22

ANN 0.168 10.82 0.947 0.31

PC-ANN 0.154 9.88 0.957 0.16

The performance of all these models were assessed using var-
ious error terms like normalized absolute error, root mean square 
error, index of agreement and mean biased error. Table 7 shows 
values of performance indicators for all models. The value of NAE 
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was the maximum for MLR based model followed by PCR, ANN 
and PC-ANN models. Similarly, RMSE was the maximum for MLR 
model and the minimum for PC-ANN model. The value of NAE and 
RMSE should be closer to zero for the most accurate model [51]. 

RMSE gives the estimate of overall deviation between ob-
served and predicted values. The low value of RMSE indicates that 
model is working well [34]. However, high value of RMSE does not 
mean that model is completely wrong because peak values have 
high impact on RMSE [58]. IA is an indicator of closeness of ob-
served and predicted value. If the model is closer to one it indi-
cates that predicted values are close to observed values and it was 
closest to 1 for PC-ANN based model indicating best agreement of 
this model with observed dataset. The value of MBE was less than 
zero for PCR while greater than zero for MLR, ANN and PCANN 
which suggest that MLR, ANN and PCANN were over predicting 
ozone levels while PCR showed under prediction.

Figure 9: Scatter plot of observed ozone levels with MLR, PCR, 
ANN and PCANN predicted ozone levels for sample dataset.

Figure 9 shows regression analysis of predicted ozone and ob-
served ozone levels for sample dataset. This sample dataset was 
not used for construction of models. For multiple linear regres-
sion, the regression coefficient between observed and predicted 
data was 0.7 while for PCR regression coefficient was 0.709. The 
value of regression coefficient for ANN (R = 0.751) and PC-ANN (R 
= 0.753) was slightly higher. The R value for sample data set was 
smaller than that of modelled data. The models were optimized 
for the dataset used for their construction and not for sample data 
which may result in decrease in accuracy for sample data.

Conclusion
The study includes prediction of next day hourly ozone con-

centration using four models. These models are multiple linear 
regression (MLR), principal component regression (PCR), artifi-
cial neural network (ANN) and principal component-based ANN 
(PCANN). These models were constructed using hourly concen-
tration of O3, NO2, CO, temperature, relative humidity, wind speed, 
solar radiation and solar radiation duration of 2014-2015. During 
the study period, the average concentration of O3, NO2 and CO was 
37.7±23.4, 8.6±5.2 and 273.3±306.5ppb, respectively. At the study 
site, ozone levels exceed hourly and eight hourly NAAQS ozone 

limit on several days which may result in detrimental effect on hu-
man health and vegetation, therefore, prediction of ozone levels is 
an essential requirement. 

The first model is based on MLR and regression coefficient for 
this model was 0.85. The equation for the model suggests that O3 
levels of next day maximally influenced by previous day hourly O3 
levels. The second model was PCR model which was constructed 
by using factor scores of principal components (PCs) as input vari-
able in multiple linear regression. For these four principal com-
ponents were generated through principal component analysis. 
The regression coefficient for second model (R = 0.87) was better 
than first model as it is devoid of problem of multicollinearity. The 
model 3 is feedforward backpropagation ANN model consisted of 
three layers. The best model has 15 neurons in hidden layer and 
regression coefficient of 0.909. The model 4 is principal compo-
nent-based ANN model. Like model 2 in this model, factor scores 
of four PCs were used as input variables. The best model is con-
sisted of 9 neurons in hidden layer and has regression coefficient 
of 0.923. The R value is significantly higher for nonlinear models 
(ANN and PCANN) as compared to linear models (MLR and PCR).

The performance of all models was checked using various er-
ror terms. Based on error terms, the best model was PCANN as it 
is associated with minimum value of NAE, RMSE and maximum 
value of IA. The efficiency of model was also checked using an un-
known dataset which was not used in the construction of models. 
All the models showed satisfactory agreement between observed 
and predicted O3 levels.

Acknowledgement
The authors are thankful to the Director, Dayalbagh 

Educational Institute, Agra and the Head, Department of 
Chemistry for necessary help. The authors gratefully acknowledge 
the financial support for this work which was provided by ISRO 
GBP under AT-CTM project.

References
1.	 Kim KH, Kabir E, Kabir S (2015) A review on the human health impact 

of airborne particulate matter. Environ Int 74: 136-143.

2.	 Turnock ST, Butt EW, Richardson TB, Mann GW, Reddington CL, et al. 
(2016) The impact of European legislative and technology measures to 
reduce air pollutants on air quality, human health and climate. Environ 
Res Lett 11(2): 024010.

3.	 Dimitriou K, Paschalidou AK, Kassomenos PA (2013) Assessing air 
quality with regards to its effect on human health in the European 
Union through air quality indices. Ecol Indic 27: 108-115.

4.	 Ogwu FA, Peters AA, Aliyu HB, Abubakar N (2015) An Investigative 
approach on the effect of air pollution on climate change and human 
health in the niger delta region of Nigeria. Int J Sci Res Innov Technol 
2(5): 37-49.

5.	 Tedoldi D, Chebbo G, Pierlot D, Branchu P, Kovacs Y, et al. (2017) Spatial 
distribution of heavy metals in the surface soil of source-control 
stormwater infiltration devices–Inter-site comparison.  Sci Total 
Environ 579: 881-892.

6.	 Moustris KP, Nastos, PT, Larissi IK, Paliatsos AG (2012) Application 
of multiple linear regression models and artificial neural networks 

http://dx.doi.org/10.19080/IJESNR.2019.18.555982
https://www.ncbi.nlm.nih.gov/pubmed/25454230
https://www.ncbi.nlm.nih.gov/pubmed/25454230
https://iopscience.iop.org/article/10.1088/1748-9326/11/2/024010
https://iopscience.iop.org/article/10.1088/1748-9326/11/2/024010
https://iopscience.iop.org/article/10.1088/1748-9326/11/2/024010
https://iopscience.iop.org/article/10.1088/1748-9326/11/2/024010
https://www.sciencedirect.com/science/article/pii/S1470160X12004141
https://www.sciencedirect.com/science/article/pii/S1470160X12004141
https://www.sciencedirect.com/science/article/pii/S1470160X12004141
http://www.ijsrit.com/uploaded_all_files/3347700356_z5.pdf
http://www.ijsrit.com/uploaded_all_files/3347700356_z5.pdf
http://www.ijsrit.com/uploaded_all_files/3347700356_z5.pdf
http://www.ijsrit.com/uploaded_all_files/3347700356_z5.pdf
https://www.ncbi.nlm.nih.gov/pubmed/27884529
https://www.ncbi.nlm.nih.gov/pubmed/27884529
https://www.ncbi.nlm.nih.gov/pubmed/27884529
https://www.ncbi.nlm.nih.gov/pubmed/27884529
https://www.hindawi.com/journals/amete/2012/894714/
https://www.hindawi.com/journals/amete/2012/894714/


How to cite this article: Nidhi V, Sonal K, Anita L, K Maharaj K. 24 Hour Advance Forecast of Surface Ozone Using Linear and Non-Linear Models at a 
Semi-Urban Site of Indo-Gangetic Plain. Int J Environ Sci Nat Res. 2019; 18(2): 555982.DOI: 10.19080/IJESNR.2019.18.555982054

International Journal of Environmental Sciences & Natural Resources

on the surface ozone forecast in the greater Athens area, Greece. Adv. 
Meteorol 2012(894714): 8.

7.	 Nastos PT, Paliatsos AG, Anthracopoulos MB, Roma ES, Priftis KN 
(2010) Outdoor particulate matter and childhood asthma admissions 
in Athens, Greece: a time-series study. Environ Health 9(1): 45.

8.	 Samoli E, Nastos PT, Paliatsos AG, Katsouyanni K, Priftis KN (2011) 
Acute effects of air pollution on pediatric asthma exacerbation: 
evidence of association and effect modification. Environ Res  111(3): 
418-424.

9.	 NAAQS, CPCB (2009) The gazette of India, ministry of environmental 
and forests notification. National Ambient Air Quality Standards 16.

10.	NAAQS, EPA (2015) Criteria pollutants.

11.	Saavedra S, Rodríguez A, Taboada JJ, Souto JA, Casares JJ (2012) 
Synoptic patterns and air-mass transport during ozone episodes in 
northwestern Iberia. Sci Total Environ 441: 97-110.

12.	Verma N, Lakhani A, Kumari KM (2017a) High ozone episodes at a semi-
urban site in India: Photochemical generation and transport.  Atmos 
Res 197: 232-243.

13.	Borrego C, Schatzmann M, Galmarini S (2003) Quality assurance of air 
pollution models. In Air Quality in Cities, Springer Berlin Heidelberg, 
USA, pp. 155-183.

14.	Zanetti M, Litteri L, Gennaro R, Horstmann H, Romeo D (1990) 
Bactenecins, defense polypeptides of bovine neutrophils, are 
generated from precursor molecules stored in the large granules.  J Cell 
Biol 111(4): 1363-1371.

15.	Abdul-Wahab SA, Al-Alawi SM (2002) Assessment and prediction 
of tropospheric ozone concentration levels using artificial neural 
networks. Environ Modell Softw 17(3): 219-228.

16.	Abdul-Wahab SA, Bakheit CS, Al-Alawi, SM (2005) Principal 
component and multiple regression analysis in modelling of ground-
level ozone and factors affecting its concentrations.  Environ Modell 
Softw 20(10):1263-1271.

17.	Al-Alawi SM, Abdul-Wahab SA, Bakheit CS (2008) Combining principal 
component regression and artificial neural networks for more accurate 
predictions of ground-level ozone. Environ Modell Softw 23(4): 396-
403.

18.	Feng Y, Zhang W, Sun D, Zhang L (2011) Ozone concentration forecast 
method based on genetic algorithm optimized back propagation neural 
networks and support vector machine data classification.  Atmos 
Environ 45(11): 1979-1985.

19.	Gocheva-Ilieva SG, Ivanov AV, Voynikova DS, Boyadzhiev DT (2014) 
Time series analysis and forecasting for air pollution in small urban 
area: an SARIMA and factor analysis approach. Stoch Environ Res Risk 
Assess 28(4): 1045-1060.

20.	Lengyel A, Héberger K, Paksy L, Bánhidi O, Rajkó R (2004) 
Prediction of ozone concentration in ambient air using multivariate 
methods. Chemosphere 57(8): 889-896.

21.	Moustris KP, Ziomas IC, Paliatsos AG (2010) 3-Day-ahead forecasting 
of regional pollution index for the pollutants NO2, CO, SO2, and O3 
using artificial neural networks in Athens, Greece.  Water Air Soil 
Pollut 209(1-4): 29-43.

22.	Özbay B, Keskin GA, Doğruparmak ŞÇ, Ayberk S (2011) Multivariate 
methods for ground-level ozone modeling. Atmos Res 102(1-2): 57-65.

23.	Sousa SIV, Martins FG, Alvim-Ferraz MCM, Pereira MC (2007) Multiple 
linear regression and artificial neural networks based on principal 
components to predict ozone concentrations.  Environ Modell 
Softw 22(1): 97-103.

24.	Singla V, Pachauri T, Satsangi A, Kumari KM, Lakhani A (2012) Surface 
ozone concentrations in Agra: links with the prevailing meteorological 

parameters. Theor Appl climatol 110(3): 409-421.

25.	Verma N, Satsangi A, Lakhani A, Kumari KM (2015) Prediction of 
ground level ozone concentration in ambient air using multiple linear 
regression. J Chem Biol Phy Sci 5(4): 3685-3696.

26.	Ansiau D, Marquié JC, Soubelet A, Ramos S (2005) Relationships 
between cognitive characteristics of the job, age, and cognitive 
efficiency. In International Congress Series, Elsevier 1280: 43-48.

27.	Smith CM, Wachob DG (2006) Trends associated with residential 
development in riparian breeding bird habitat along the Snake River 
in Jackson Hole, WY, USA: implications for conservation planning. Biol 
Cons 128(4): 431-446.

28.	Gardner MW, Dorling SR (1998) Artificial neural networks (the 
multilayer perceptron)—a review of applications in the atmospheric 
sciences. Atmos Environ 32(14-15): 2627-2636.

29.	Dutot AL, Rynkiewicz J, Steiner FE, Rude J (2007) A 24-h forecast 
of ozone peaks and exceedance levels using neural classifiers and 
weather predictions. Environ Modell Softw 22(9): 1261-1269.

30.	Papanastasiou DK, Melas D, Kioutsioukis I (2007) Development and 
assessment of neural network and multiple regression models in order 
to predict PM10 levels in a medium-sized Mediterranean city. Water 
Air Soil Pollut 182(1-4): 325-334.

31.	Singla V, Pachauri T, Satsangi A, Kumari KM, Lakhani A (2011) O3 
Formation and Destruction at a Sub-urban Site in North Central Region 
of India. Atmos Res 101(1-2): 373-385.

32.	Verma N, Satsangi A, Lakhani A, Kumari KM, Lal S (2017b) Diurnal, 
Seasonal, and Vertical Variability in Carbon Monoxide Levels at a Semi‐
Urban Site in India. CLEAN 45(5).

33.	Pires JCM, Martins FG, Sousa SIV, Alvim-Ferraz MCM, Pereira MC 
(2008) Selection and validation of parameters in multiple linear and 
principal component regressions. Environ Modell Softw 23(1): 50-55.

34.	Vlachogianni A, Kassomenos P, Karppinen A, Karakitsios S, Kukkonen 
J (2011) Evaluation of a multiple regression model for the forecasting 
of the concentrations of NOx and PM10 in Athens and Helsinki. Sci Total 
Environ 409(8): 1559-1571.

35.	Janssen W, Wijnen K, Pelsmacker PD, Kenhove PV (2008) Marketing 
Research with SPSS. Pearson Education Limited, UK.

36.	Gvozdić V, Kovač-Andrić E, Brana J (2011) Influence of meteorological 
factors NO2, SO2, CO and PM10 on the concentration of O3 in the urban 
atmosphere of Eastern Croatia. Environ Modell Assess 16(5): 491-501.

37.	Dominick D, Juahir H, Latif MT, Zain SM, Aris AZ (2012) Spatial 
assessment of air quality patterns in Malaysia using multivariate 
analysis. Atmos Environ 60: 172-181.

38.	Ul-Saufie AZ, Yahaya AS, Ramli NA, Rosaida N, Hamid HA (2013) Future 
daily PM10 concentrations prediction by combining regression models 
and feedforward backpropagation models with principle component 
analysis (PCA). Atmos Environ 77: 621-630.

39.	Elbayoumi M, Ramli NA, Yusof NFFM (2015) Spatial and temporal 
variations in particulate matter concentrations in twelve schools 
environment in urban and overpopulated camps landscape.  Build 
Environ 90: 157-167.

40.	Chellali MR, Abderrahim H, Hamou A, Nebatti A, Janovec J (2016) 
Artificial neural network models for prediction of daily fine particulate 
matter concentrations in Algiers.  Environ Sci Pollut Res  23(14): 
14008-14017.

41.	Yang J, Rivard H, Zmeureanu R (2005) On-line building energy 
prediction using adaptive artificial neural networks. Energy Build 
37(12): 1250-1259.

42.	Kriesel D (2007) A Brief Introduction to Neural Networks, (1st edn).

http://dx.doi.org/10.19080/IJESNR.2019.18.555982
https://www.hindawi.com/journals/amete/2012/894714/
https://www.hindawi.com/journals/amete/2012/894714/
https://www.ncbi.nlm.nih.gov/pubmed/20667130
https://www.ncbi.nlm.nih.gov/pubmed/20667130
https://www.ncbi.nlm.nih.gov/pubmed/20667130
https://www.ncbi.nlm.nih.gov/pubmed/21296347
https://www.ncbi.nlm.nih.gov/pubmed/21296347
https://www.ncbi.nlm.nih.gov/pubmed/21296347
https://www.ncbi.nlm.nih.gov/pubmed/21296347
https://www.epa.gov/criteria-air-pollutants/naaqs-table
https://www.ncbi.nlm.nih.gov/pubmed/23137974
https://www.ncbi.nlm.nih.gov/pubmed/23137974
https://www.ncbi.nlm.nih.gov/pubmed/23137974
https://www.sciencedirect.com/science/article/pii/S0169809517305021
https://www.sciencedirect.com/science/article/pii/S0169809517305021
https://www.sciencedirect.com/science/article/pii/S0169809517305021
https://www.ncbi.nlm.nih.gov/pubmed/2211815
https://www.ncbi.nlm.nih.gov/pubmed/2211815
https://www.ncbi.nlm.nih.gov/pubmed/2211815
https://www.ncbi.nlm.nih.gov/pubmed/2211815
https://www.sciencedirect.com/science/article/pii/S1364815201000779
https://www.sciencedirect.com/science/article/pii/S1364815201000779
https://www.sciencedirect.com/science/article/pii/S1364815201000779
https://www.sciencedirect.com/science/article/pii/S1364815204002129
https://www.sciencedirect.com/science/article/pii/S1364815204002129
https://www.sciencedirect.com/science/article/pii/S1364815204002129
https://www.sciencedirect.com/science/article/pii/S1364815204002129
https://www.sciencedirect.com/science/article/pii/S1364815206002076
https://www.sciencedirect.com/science/article/pii/S1364815206002076
https://www.sciencedirect.com/science/article/pii/S1364815206002076
https://www.sciencedirect.com/science/article/pii/S1364815206002076
https://www.sciencedirect.com/science/article/pii/S135223101100029X
https://www.sciencedirect.com/science/article/pii/S135223101100029X
https://www.sciencedirect.com/science/article/pii/S135223101100029X
https://www.sciencedirect.com/science/article/pii/S135223101100029X
https://link.springer.com/article/10.1007/s00477-013-0800-4
https://link.springer.com/article/10.1007/s00477-013-0800-4
https://link.springer.com/article/10.1007/s00477-013-0800-4
https://link.springer.com/article/10.1007/s00477-013-0800-4
https://www.ncbi.nlm.nih.gov/pubmed/15488579
https://www.ncbi.nlm.nih.gov/pubmed/15488579
https://www.ncbi.nlm.nih.gov/pubmed/15488579
https://link.springer.com/article/10.1007/s11270-009-0179-5
https://link.springer.com/article/10.1007/s11270-009-0179-5
https://link.springer.com/article/10.1007/s11270-009-0179-5
https://link.springer.com/article/10.1007/s11270-009-0179-5
https://www.sciencedirect.com/science/article/pii/S0169809511001839
https://www.sciencedirect.com/science/article/pii/S0169809511001839
https://www.sciencedirect.com/science/article/pii/S1364815205002240
https://www.sciencedirect.com/science/article/pii/S1364815205002240
https://www.sciencedirect.com/science/article/pii/S1364815205002240
https://www.sciencedirect.com/science/article/pii/S1364815205002240
https://link.springer.com/article/10.1007/s00704-012-0632-z
https://link.springer.com/article/10.1007/s00704-012-0632-z
https://link.springer.com/article/10.1007/s00704-012-0632-z
https://www.sciencedirect.com/science/article/abs/pii/S0006320705004209
https://www.sciencedirect.com/science/article/abs/pii/S0006320705004209
https://www.sciencedirect.com/science/article/abs/pii/S0006320705004209
https://www.sciencedirect.com/science/article/abs/pii/S0006320705004209
https://www.sciencedirect.com/science/article/pii/S1352231097004470
https://www.sciencedirect.com/science/article/pii/S1352231097004470
https://www.sciencedirect.com/science/article/pii/S1352231097004470
https://www.sciencedirect.com/science/article/pii/S1364815206001976
https://www.sciencedirect.com/science/article/pii/S1364815206001976
https://www.sciencedirect.com/science/article/pii/S1364815206001976
https://link.springer.com/article/10.1007/s11270-007-9341-0
https://link.springer.com/article/10.1007/s11270-007-9341-0
https://link.springer.com/article/10.1007/s11270-007-9341-0
https://link.springer.com/article/10.1007/s11270-007-9341-0
https://www.sciencedirect.com/science/article/pii/S0169809511000949
https://www.sciencedirect.com/science/article/pii/S0169809511000949
https://www.sciencedirect.com/science/article/pii/S0169809511000949
https://onlinelibrary.wiley.com/doi/abs/10.1002/clen.201600432
https://onlinelibrary.wiley.com/doi/abs/10.1002/clen.201600432
https://onlinelibrary.wiley.com/doi/abs/10.1002/clen.201600432
https://www.sciencedirect.com/science/article/pii/S1364815207000874
https://www.sciencedirect.com/science/article/pii/S1364815207000874
https://www.sciencedirect.com/science/article/pii/S1364815207000874
https://www.ncbi.nlm.nih.gov/pubmed/21277004
https://www.ncbi.nlm.nih.gov/pubmed/21277004
https://www.ncbi.nlm.nih.gov/pubmed/21277004
https://www.ncbi.nlm.nih.gov/pubmed/21277004
https://link.springer.com/article/10.1007/s10666-011-9256-4
https://link.springer.com/article/10.1007/s10666-011-9256-4
https://link.springer.com/article/10.1007/s10666-011-9256-4
https://www.sciencedirect.com/science/article/pii/S1352231012005729
https://www.sciencedirect.com/science/article/pii/S1352231012005729
https://www.sciencedirect.com/science/article/pii/S1352231012005729
https://www.sciencedirect.com/science/article/pii/S1352231013003609
https://www.sciencedirect.com/science/article/pii/S1352231013003609
https://www.sciencedirect.com/science/article/pii/S1352231013003609
https://www.sciencedirect.com/science/article/pii/S1352231013003609
https://www.sciencedirect.com/science/article/pii/S0360132315001547
https://www.sciencedirect.com/science/article/pii/S0360132315001547
https://www.sciencedirect.com/science/article/pii/S0360132315001547
https://www.sciencedirect.com/science/article/pii/S0360132315001547
https://www.ncbi.nlm.nih.gov/pubmed/27040548
https://www.ncbi.nlm.nih.gov/pubmed/27040548
https://www.ncbi.nlm.nih.gov/pubmed/27040548
https://www.ncbi.nlm.nih.gov/pubmed/27040548
https://www.sciencedirect.com/science/article/pii/S0378778805000502
https://www.sciencedirect.com/science/article/pii/S0378778805000502
https://www.sciencedirect.com/science/article/pii/S0378778805000502


How to cite this article: Nidhi V, Sonal K, Anita L, K Maharaj K. 24 Hour Advance Forecast of Surface Ozone Using Linear and Non-Linear Models at a 
Semi-Urban Site of Indo-Gangetic Plain. Int J Environ Sci Nat Res. 2019; 18(2): 555982.DOI: 10.19080/IJESNR.2019.18.555982055

International Journal of Environmental Sciences & Natural Resources

43.	Yusof NFFM, Ramli NA, Yahaya AS, Sansuddin N, Ghazali NA, et al. 
(2010) Monsoonal differences and probability distribution of PM10 
concentration. Environ Monitor Assess 163(1-4): 655-667.

44.	Bhuyan PK, Bharali C, Pathak B, Kalita G (2014) The role of precursor 
gases and meteorology on temporal evolution of O3 at a tropical 
location in northeast India. Environ Sci Pollut Res 21(10): 6696-6713.

45.	Yadav R, Sahu LK, Beig G, Jaaffrey SN (2016) Role of long-range 
transport and local meteorology in seasonal variation of surface ozone 
and its precursors at an urban site in India. Atmos Res 176-177: 96-
107.

46.	Gopal KR, Lingaswamy AP, Arafath SM, Balakrishnaiah G, Kumari SP, 
et al. (2014) Seasonal heterogeneity in ozone and its precursors (NOx) 
by in-situ and model observations on semi-arid station in Anantapur 
(AP), South India. Atmos Environ 84: 294-306.

47.	Kumar A, Singh D, Singh BP, Singh M, Anandam K, et al. (2015) Spatial 
and temporal variability of surface ozone and nitrogen oxides in urban 
and rural ambient air of Delhi-NCR, India. Air Qual Atmos Health 8(4): 
391-399.

48.	Sarangi T, Naja M, Ojha N, Kumar R, Lal S, et al. (2014) First 
simultaneous measurements of ozone, CO, and NOy at a high‐altitude 
regional representative site in the central Himalayas.  J Geophys Res 
Atmos 119(3): 1592-1611.

49.	Ojha N, Naja M, Singh KP, Sarangi T, Kumar R, et al. (2012) Variabilities 
in ozone at a semi‐urban site in the Indo‐Gangetic Plain region: 
Association with the meteorology and regional processes.  J Geophys 
Res Atmos 117(D20).

50.	Tiwari S, Dahiya A, Kumar N (2015) Investigation into relationships 
among NO, NO2, NOx, O3, and CO at an urban background site in Delhi, 
India. Atmos Res 157: 119-126.

51.	Sharma A, Sharma SK, Mandal TK (2016) Influence of ozone precursors 
and particulate matter on the variation of surface ozone at an urban 
site of Delhi, India. Sustain Environ Res 26(2): 76-83.

52.	Naja M, Lal S (2002) Surface ozone and precursor gases at Gadanki 
(13.5°N, 79.2°E), tropical rural site in India. J Geophys Res 107(D14): 
ACH 8-1-ACH 8-13. 

53.	Bowerman BL, O’Connell  RT, Koehler AB (2005) Forecasting Times 
Series, and regression. An Applied Approach (4th edn), Belmont, CA: 
Thomson Learning, USA.

54.	Awang NR, Ramli NA, Yahaya AS, Elbayoumi M (2015) Multivariate 
methods to predict ground level ozone during daytime, nighttime, and 
critical conversion time in urban areas.  Atmos Pollut Res  6(5): 726-
734.

55.	Izenman AJ (2008) Modern multivariate statistical techniques 
(Chapter 7.2). Springer, New York, USA.

56.	He HD, Lu WZ, Xue Y (2015) Prediction of particulate matters at urban 
intersection by using multilayer perceptron model based on principal 
components. Stoch Environ Res Risk Assess 29(8): 2107-2114.

57.	Abderrahim H, Chellali MR, Hamou A (2016) Forecasting PM10 in 
Algiers: efficacy of multilayer perceptron networks. Environ Sci Pollut 
Res 23(2): 1634-1641. 

58.	Willmott CJ (1981) On the validation of models. Phys Geography 2(2): 
184-194.

Your next submission with Juniper Publishers    
      will reach you the below assets

•	 Quality Editorial service
•	 Swift Peer Review
•	 Reprints availability
•	 E-prints Service
•	 Manuscript Podcast for convenient understanding
•	 Global attainment for your research
•	 Manuscript accessibility in different formats 

         ( Pdf, E-pub, Full Text, Audio) 
•	 Unceasing customer service

Track the below URL for one-step submission 
   https://juniperpublishers.com/online-submission.php

This work is licensed under Creative
Commons Attribution 4.0 License
DOI: 10.19080/IJESNR.2019.18.555982

http://dx.doi.org/10.19080/IJESNR.2019.18.555982
https://link.springer.com/article/10.1007/s10661-009-0866-0
https://link.springer.com/article/10.1007/s10661-009-0866-0
https://link.springer.com/article/10.1007/s10661-009-0866-0
https://www.ncbi.nlm.nih.gov/pubmed/24526397
https://www.ncbi.nlm.nih.gov/pubmed/24526397
https://www.ncbi.nlm.nih.gov/pubmed/24526397
https://www.sciencedirect.com/science/article/pii/S0169809516300357
https://www.sciencedirect.com/science/article/pii/S0169809516300357
https://www.sciencedirect.com/science/article/pii/S0169809516300357
https://www.sciencedirect.com/science/article/pii/S0169809516300357
https://www.sciencedirect.com/science/article/pii/S135223101300767X
https://www.sciencedirect.com/science/article/pii/S135223101300767X
https://www.sciencedirect.com/science/article/pii/S135223101300767X
https://www.sciencedirect.com/science/article/pii/S135223101300767X
https://link.springer.com/article/10.1007/s11869-014-0309-0
https://link.springer.com/article/10.1007/s11869-014-0309-0
https://link.springer.com/article/10.1007/s11869-014-0309-0
https://link.springer.com/article/10.1007/s11869-014-0309-0
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013JD020631
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013JD020631
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013JD020631
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013JD020631
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012JD017716
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012JD017716
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012JD017716
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012JD017716
https://www.sciencedirect.com/science/article/pii/S0169809515000253
https://www.sciencedirect.com/science/article/pii/S0169809515000253
https://www.sciencedirect.com/science/article/pii/S0169809515000253
https://www.sciencedirect.com/science/article/pii/S2468203916300188
https://www.sciencedirect.com/science/article/pii/S2468203916300188
https://www.sciencedirect.com/science/article/pii/S2468203916300188
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2001JD000357
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2001JD000357
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2001JD000357
https://www.sciencedirect.com/science/article/abs/pii/S1309104215301653
https://www.sciencedirect.com/science/article/abs/pii/S1309104215301653
https://www.sciencedirect.com/science/article/abs/pii/S1309104215301653
https://www.sciencedirect.com/science/article/abs/pii/S1309104215301653
https://link.springer.com/article/10.1007/s00477-014-0989-x
https://link.springer.com/article/10.1007/s00477-014-0989-x
https://link.springer.com/article/10.1007/s00477-014-0989-x
https://www.ncbi.nlm.nih.gov/pubmed/26381787
https://www.ncbi.nlm.nih.gov/pubmed/26381787
https://www.ncbi.nlm.nih.gov/pubmed/26381787
https://www.tandfonline.com/doi/abs/10.1080/02723646.1981.10642213
https://www.tandfonline.com/doi/abs/10.1080/02723646.1981.10642213
https://juniperpublishers.com/online-submission.php
http://dx.doi.org/10.19080/IJESNR.2019.18.555982

	24 Hour Advance Forecast of Surface Ozone Time-Series Using Linear and Non-Linear Models at a Semi-U
	Abstract 
	Introduction
	Methodology 
	Study site and data  
	Models  

	Results and Discussion 
	Model 2: Principal component regression (PCR) 
	Model 4: Principal component-based ANN model (PCANN)
	Model 3: Artificial neural network (ANN) 

	Conclusion 
	Acknowledgement 
	References 
	Figure 1
	Figure 2
	Figure 3
	Figure 4:
	Figure 5
	Figure 6
	Figure 7
	Figure 9
	Table 1
	Table 2
	Table 4
	Table 5
	Table 6
	Table 7

