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Introduction
Numerous rivers around the world have experienced long 

term artificial changes in their hydrology [1,2]. These changes are 
induced by engineering structures (such as dams and reservoirs) 
[1-3], navigation [4,5], waste disposal [6], channelization, and 
construction of levees and canals [7]; and have altered the river 
floodplain ecosystems to a level of threatening their biodiversity 
[8,9]. Alternations in river floodplain ecosystems may include 
changes in forest community structure and successional 
processes [10], decrease in establishment and growth of 
floodplain trees [11,12], mortality of overstorey trees [13], 
and extensive shifts from herbaceous to woody communities 
[14]. Hydrologic changes can also impact sediment processes in 
rivers adversely which can further prove costly to the formation, 
development and sustainability of river deltas [15-17].

Hydrological changes in rivers mainly include alterations 
(mostly decrease) in their natural discharge (flow) regimes and 
stages (water levels) [2]. River-floodplain ecosystems depend 
substantially on flood pulse, defined as the timing, depth, 
duration and frequency of river floods [18,19]. Higher variability 
and predictability in flood-pulse is necessary for sustainable 
and dynamic river-floodplain ecosystems [18,19]. However, 
rivers around the world are being subjected to artificial control 
more recently which has brought about reduction in their peak 
discharge [20] and frequency and duration of their floods 
[18]. Similarly, reduction in river stages due to human induced 
changes in rivers have also been documented previously [21-23].

The Apalachicola River (described extensively in the “Study 
Area” section below) in Florida has also experienced long term 
hydrologic change due to anthropogenic interferences. Previous 
studies have quantified long term stage and discharge changes 
in the river [21,24-26]; however, information available in 
this regard has not been synthesized properly till date. Such a 
synthesis can help in river management and restoration plans in 
terms of mimicking the natural stage and discharge variability in 
the river. Therefore, this study attempts to delve deeper into long 
term hydrological changes in the Apalachicola River. Current and 
historical river stages and discharge have been compared and 
any such information available on peer reviewed journals and 
relevant federal reports have been synthesized.

Study Area
The Apalachicola River (Figure 1) lies in Florida as a major 

alluvial river on the state’s coastal plain. It is formed because of 
the confluence of the Flint and Chattahoochee Rivers, very close 
to the state line between Florida and Georgia, near the town of 
Chattahoochee, Florida [27]. At its mouth, the river drains into an 
inlet of the Gulf of Mexico called Apalachicola Bay, at Apalachicola 
[27]. This river is 171km long and has a mean annual discharge 
of ~ 630m3/s [28]. It experiences extensive seasonal variability 
in daily discharge ranging approximately from 250m3/s (low) in 
late summer and/or fall (July – November) to 3000m3/s in late 
winter and/or early spring (January – April) [24,29]. However, 
the variability in discharge has reduced over time due to 
excessive human intervention in the river [21]. 
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Figure 1: Part (a.) is the map of the Apalachicola River with reference to the Apalachicola-Chattahoochee-Flint (ACF) River Basin in part 
(a.) (Kept from Smith [29]), while part (b.) is the map of Apalachicola River specifically categorized into different Gage stations and four 
reaches: Upper, Middle, Non-tidal, and Tidal (kept from Stallins et al. [3]).

Figure 2: Anthropogenic changes in the Apalachicola River. 
(A) the Jim Woodruff Lock and Dam, 
(B) elevations for all the dams in the Apalachicola–Chattahoochee–Flint (ACF) River Basin, 
(C) specific example of meander cutoffs in the Apalachicola River, and 
(D) river training dikes at ~ 160 river kilometers (rk) in the Apalachicola River (figure kept from Elder et al. [24]).
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Some studies have reported that flooding is important along 
the river because river flooding supports largest floodplain 
forests in Florida [26]. Floodplain forests of the river include 
unique ravines, karstic caves, longleaf savannas, pine woodlands 
and seepage bogs [30]. These forests are dominated in majority 
by bottomland hardwoods [30]. Floodplain forests of the 
river are covered by water from the river during floods which 
usually occur in late winter to early springs [31]. More recently 
floodplain forests of the river have become compositionally drier 
with fewer indicator species due to human induced changes in 
the river stages and flows [3]. 

History of Artificial Changes in the Apalachicola 
River 

The Apalachicola River has experienced several 
anthropogenic influences till date. The whole Apalachicola–
Chattahoochee–Flint (ACF) River Basin consists of 16 dams in 
total, out of which the Jim Woodruff Dam specifically lies in the 
Apalachicola River [24]. In 1950, the United States Army Corps 
of Engineers (USACE) started to construct the Jim Woodruff Dam 
(Figure 2A) at the confluence of the Chattahoochee and Flint 
Rivers, where the river starts [24]. The dam was first opened in 

February 1957 after completion of its reservoir, Lake Seminole 
[24,29]. Several other dams with varying elevations were later 
constructed further downstream in the ACF river basin (Figure 
2B) [24]. In addition, the river has been dredged several times 
[24,29]. Dredging was sporadic before 1950s, but after the Jim 
Woodruff Dam began to operate, USACE began to maintain 
30m wide and 2.7m deep channel on a regular basis [24,29]. 
Initially the dredged material (as much as 800,000m3/year) was 
placed on the Apalachicola River floodplain which caused high 
proportion of tree mortality [29,32]. However, disposal sites 
within the main channel are searched, evaluated and utilized for 
the dredged material more recently [29,32].

The river has faced a few more anthropogenic changes such 
as water storage and release by the Jim Woodruff Dam during 
high and low flows respectively [29]; meander cut offs due to 
which channel got shortened by ~ 3km (Figure 2C) [24,29]; 
installation of groins (29 sets) and river training dikes (Figure 
2D) [24], and the periodic removal of rocks from the bed [28,29]. 
In addition to these anthropogenic influences, the river also goes 
across five bridges namely: Victory, Rail, Dewey M. Johnson, 
Trammell, Rail and John Gorrie Memorial Bridges [33]. 

Hydrological Changes in the Apalachicola River 

Figure 3: (a.) Flow (upper) and stage (lower) exceedance curves of the Apalachicola River at Chattahoochee during pre- (1929-1957) and 
post-dam periods (1958-1979); 
(b.) Average monthly flows in the Apalachicola River at Chattahoochee (taken from Leitman et al. [32]).

The Apalachicola River have been experiencing 
anthropogenic changes induced by sporadic dredging before 
1950s which further increased considerably from mid-1950s 
after Jim Woodruff Dam construction [29]. However, systematic 
investigation on the nature of these changes and their impacts 
on water quality, stage and discharge of the river started 
much later in 1980s. Leitman et al. [32] and Elder et al. [24] 
were pioneer studies in this regard, both carried out by the 
United States Geological Survey (USGS). Leitman et al. (1983) 

compared the pre– (1929-1957) and post– (1958-1979) dam 
river stages and discharge regimes at two upstream gaging 
stations (Chattahoochee and Blountstown) in the river. They 
observed higher pre-dam river stages at both stations and 
lower annual and monthly flows at uppermost gaging station 
at Chattahoochee (they could not conclude anything about pre-
and post-dam flows further down at Blountstown) (deduced 
from exceedance curves in Figure 3 – note that this figure only 
informs about Chattahoochee gage, please check the report for 
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similar figure on Blountstown gage). They further argued that 
climatic changes were probably responsible for higher post-dam 
river flows, while lower post-dam river stages were induced by 
physical changes in the river channel. Similar observations were 

made by Elder et al. [24] that the artificial changes impacted river 
stages more than river flows especially in the upper reaches of 
the river and that the effects of the changes in river flows are not 
noticeable.

Figure 4: Comparison of pre- and post-dam water-surface profiles and average river stage at several gage stations along the Apalachicola 
River (taken from Light et al. [21]).

Figure 5: Yearly trend of river stages at four different locations [having United States Geological Survey gages) in the river. The flow 
conditions during the year have been separated by blue (flood year), brown (dry year) or while (normal year) dots. Annual analysis was 
based on climate years (April 1-March 31) (taken from Light et al. [21]).
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Hydrologic records of the Apalachicola River were also 
analyzed in depth by another USGS report, Light et al. [21] 
(Figures 4 & 5). This report provides an extensive examination 
of past (pre-dam) and present (post-dam) water levels at four 
gaging stations (Chattahoochee, Blounstown, Wewahitchka and 
Sumatra) systematically from upstream to downstream covering 
the whole river reach. They found lower water surface profile in 
1995 (post-dam) than in 1956 (just before dam construction) 
(Figure 4). They further observed that the pre-dam to post-dam 
period river stage (RS) declines were evident in the upstream 
parts of the river at Chattahoochee and Blountstown gaging 
stations, while, not noticeable in the downstream parts at 

Wewahitchka and Sumatra (Figure 5). Furthermore, highest 
water level declines in the post-dam period were observed 
during low flows which were also observed by Darst & Light 
[31]. Darst & Light [31] further deduced that water level decline 
in the low flows was highest in the upstream parts of the river; 
the decline gets reduced in the middle and lower reach (Figure 
6). They pointed out that the lowest decline in river stages of 
low flows could be observed at lowermost parts of the river 
very close to the Apalachicola Bay (Figure 6). They also deduced 
that water levels had declined more due to channel erosion as 
compared to reduced flows in the upstream parts of the river 
(Figure 6). 

Figure 6: Long term water-level decline along the Apalachicola River during drought conditions (defined by lowest 10% of the flows) during 
1929-2004. Brown color in the bars denote water level loss due to channel erosion, while, blue colors represent water level decline caused 
by decreased flow in the river (taken from Darst and Light [31]).

Most recently, Smith et al. [26] examined the hydrological 
shifts in the Apalachicola River at Chattahoochee and 
Blountstown gages and overall impact of the shifts in river 
modification (Figure 7). Smith et al. found lowering for long 

term 5-year moving averages of stage and discharge at the 
Chattahoochee gage (Figure 7a). As suggested earlier by Leitman 
et al. [32] and Elder et al. [24] the lowering was evident in stages 
while not so much in the river discharge (Figure 7a). Similarly, 
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abrupt changes were observed in the number of reversals per 
year between daily average stage values (Figure 7b) at the 
Chattahoochee gage and average rise and fall rates of river stages 
at the Blountstown gage (Figure 7c). The number of reversals 

per year increased in the post dam period in which the rise/fall 
rates were more variable. Smith et al. [26] and all the studies 
support the argument about reduced variability in both stages 
and flow of the Apalachicola River.

Figure 7: (a.) Five-year moving average of mean annual river stage (RS) (m) and mean annual river discharge (cms); 
(b.) number of days per year in which average daily RS reverses between rise and fall; 
(c.) annual average rate of rise and fall of river stages at the Blountstown gage (cm/day). 
Note: (a.) and (b.) were analyzed at Chattahoochee gage, while, (c.) was analyzed at Blountstown gage. All (a.), (b.) and (c.) were for the 
Apalachicola River (taken from Smith et al. [26]).

Discussion 
The argument of Leitman et al. [32] and Elder et al. [24] 

regarding little impact of dam effect on river flows seems 
questionable because dams can regulate river flows. Thus, 
higher river flows in the post-dam period could be because of 
pre-selected discharge regimes which were not possible to 
be selected during the pre-dam periods. Further, all studies 
claim that Apalachicola River has reduced hydro-period over 
time especially after the dam was built along the river-reach. 

The river has experienced reduction in peak flows and peak 
river stages. Specifically, upper reach of the river has lost 
more water than the lowermost part of the river. Such shifts in 
hydrologic regimes occurred because of anthropogenic changes 
in the watershed. These changes may have negative impacts 
in sediment and ecological processes along the river. Similar 
shifts in geomorphology and sediment transport (both bed and 
suspended load) have been noted for the Lowermost Mississippi 
River (downstream from the Old River Control Structures [34-
36]. 
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Conclusion
Hydrologic changes basically include alterations in stages and 

flows of a river. Anthropogenic interference in the Apalachicola 
River was subtle before 1950s. However, the construction of 
dam in the uppermost part of the river in mid-1950s marked 
the increase in human induced hydrological changes in the 
river. River stages have declined throughout the river reach 
due to channel changes. Although, the river flows seem to have 
increased in the post-dam period, their variability has been 
reduced due to river regulation by the dam at the uppermost 
part of the river. The reduced variability in river stages and 
flows has reportedly caused various problems to the river such 
as saltwater intrusion, sediment loss, floodplain and aquatic 
habitat degradation. Ongoing river restoration efforts should 
focus on the goal of mimicking the natural historical hydrology 
in the river.
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