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Introduction
Galileo navigation satellite system is the global positioning 

European program designed to be completely interoperable with 
the analogues GPS and GLONASS positioning systems produced 
by the United States of America (USA) and by the Russian Feder-
ation. With Galileo, the European Union aims at owning and pro-
viding an independent positioning/navigation service under the 
civil control [1]. 

Galileo program is constituted by two macro-phases: in Orbit 
Validation (IOV) phase and the Full Operational Capability (FOC) 
phase (whose conclusion is planned for 2020). Specifically, during 
the IOV the Galileo system robustness was tested by mean of two 
satellites (GIOVE-A and GIOVE-B) and, subsequently, with a re-
duced constellation of only four satellites (and the related ground 
infrastructure) with the aim to synchronize the satellites onboard 
atomic clocks and to perform a precise orbit tracking. Further de-
tails related to the IOV phase can be found within the works of 
Simsky et al. & Steigenberger et al. [2-5] and in [6,7]. 

The first step toward the FOC phase has been constituted by 
the European Commission formal announcement of the starting  

 
the Galileo initial services (15 December 2016). When the FOC 
phase will be concluded the constellation will rely on 24 satellites 
(and 2 back-up satellites for each orbital plane). In this phase, 
each satellite will take 14 hours to complete its orbit at the alti-
tude of 23222 Km [8]. The whole system is designed to guaran-
tee the visibility of at least 4 satellites in each point of the Earth. 
Indeed 24 satellites will be equally distributed on three different 
orbital planes at 56° with respect to the equatorial plane [9]. Fur-
ther details related to the preliminary analysis of the FOC phase 
can be found in the novel work of Zaminpardaz S & Teunissen PJG 
[10] whereas a detailed review of the project status (up to 5 July 
2016) can be found in [11].

The Galileo system is designed to provide different services. 
In this paper was considered the Galileo Open Service (OS) [8]. 
The Galileo OS is freely available for mass applications of syn-
chronization and positioning. This service does not require any 
authorization and can be used by any user equipped with an ad-
equate receiver. The OS provides up four carrier frequencies: E1 
(1575.42MHz), E5a (1176.45MHz), E5b (1207.14MHz) and E6 
(1278.75MHz). Galileo signal-to-noise ratio density is higher than 
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the GPS one and that Galileo signals are characterized by smaller 
multipath and noise than the GPS ones. 

As far the authors know, there are no examples of kinemat-
ic comparisons of the Galileo positioning performance, against 
GPS and Glonass positioning systems, by using as benchmark the 
acquisition of a precise Mobile Mapping System (MMS). In a pre-
vious paper [12], a preliminary single frequency kinematic per-
formance assessment of Galileo, GPS and, Glonass data referred 
to a trajectory estimated with MMS equipped with a POS/LV (Po-
sition and Orientation System for Land Vehicles) produced by the 
Applanix corporation, has been presented. The Applanix system 
features a filtering system capable of integrating GNSS measure-
ments with an IMU (inertial measurement unit) with the aim to 
guarantee a stable, reliable and repeatable positioning solution 
for land-based vehicle applications [12] and to guarantee better 
positioning performance with regard to GNSS only measurements 
(complementary and surpassing property [13]). The performed 
comparisons were produced in such a way to consider, for the 
three positioning systems, all the possible combinations (with 4, 
5 and 6 satellites for each considered constellation), thus by sim-
ulating a reduced operability for the GPS and the Glonass constel-
lations. All the positioning solutions were derived by mean of the 
GrafNav software It supports:

a)	 standard and precise positioning algorithms with GPS, 
Glonass, Galileo, QZSS, BeiDou and SBAS; 

b)	 Single, DGPS/DGNSS, Kinematic, Static, Moving-Base-
line, Fixed, PPP-Kinematic, PPP-Static and PPP-Fixed position-
ing modes with GNSS for both real-time and post-processing 
(further details can be found in [14]). 

The final results were statistically assessed and showed, for 
the performed experiment, a better Galileo planimetric perfor-
mance whereas, from an altimetric point of view, the GPS and 
Glonass systems performed better.

Materials and Methods 
Experiment location and MMS POS/LV description and 
configuration

The kinematic tests were carried out in the Karst plateau over 
Trieste municipality at a mean altitude of 375m above sea level, 
Italy and along a path inside Trieste urban area. The researchers 
drove the MMS vehicle at constant speed along different paths in 
urban and extra-urban contexts. The urban areas were chosen in 
order to analyze the Galileo performances also under sever satel-
lite visibility conditions (Figure 1).

Figure 1: The extra-urban (on the left) and urban (on the right) surveys superimposed on the Google Maps satellite images.

Figure 2: The MMS of the GeoSNav Lab, University of Trieste, and the Applanix Corporation POS LV© system components mounted on 
board the vehicle.

For the absolute positioning, the Mobile Mapping System uses 
the POS LV System of Applanix Corporation, a fully integrated, po-
sition and orientation system, using GNSS positioning integrated 
by inertial technology to generate stable, reliable and repeatable 
positioning solutions for land-based vehicle applications (Figure 
2). Designed to operate under the most difficult GNSS conditions 

in urban and extra-urban environments, it enables accurate po-
sitioning for road geometry, pavement inspection, GIS database 
and asset management, road surveying and vehicle dynamics (e.g. 
[15]). The integrated GNSS/INS (Global Navigation Satellite Sys-
tem/Inertial System) system is able to give, instant by instant, the 
position and attitude of the vehicle. Besides two geodetic GNSS 
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receivers and the Inertial System, an odometer mounted on the 
back-left wheel of the vehicle, is present, measuring the travelled 
distance. 

The inertial system integrates GPS in case of satellite signal 
lacking, due to obstacles like bridges, trees, buildings, giving posi-
tioning accuracies comparable to the ones obtainable using differ-
ential techniques. A Kalman filter, allowing gaining in any instant 
the best solution, performs the integration of each sensor data. 
GNSS data has a 1Hz acquisition rate, while the odometer and the 
inertial system send data to the System CPU at a 200Hz rate.

In the present research, for the planned comparisons, the out-
put point for the MMS positioning data was set on the PolaNt-x MF 
[15] antenna phase center.

The PCS (POS Computer System) is the central element of the 
system: it acquires and processes the data coming from the differ-
ent sensors, giving the vehicle positioning and attitude parame-
ters in real-time and stores them for subsequent post-processing. 
The integrated inertial system is a Litton LN-200 fiber optic gyro 
IMU with three accelerometers and three fiber optic laser gyros. 

DMI (Distance Measuring Indicator) is mounted on the vehicle 
left back wheel and contains an optical sensor generating 1024 
pulses per revolution; its function is to estimate the run distance 
and above all to determine when the vehicle is stopped (ZUPD – 
Zero velocity UPDate). Two geodetic GPS receivers give the data 
to PCS for positioning and direction determination, this last one 
using the GAMS (GPS Azimuth Measurement Subsystem) software 
module [16-23]. 

Survey experimental design 
Data were acquired during different sessions, in November 

2018, March 2019, July 2019 and August 2019. For each session 
two different survey environment were used: urban and extra-ur-
ban, in order to analyze the system performances. Indeed, the lo-
cation and the acquisition time were chosen to always guarantee 
the visibility of at least 4 Galileo satellites with a cut-off of 10° and 
of 6 Galileo satellites for the major part of the time. With regard to 
the other constellations, a peak of 11 satellites (GPS) and 9 satel-
lites (Glonass) were respectively available for the survey (Figure 
3).

Figure 3: Satellite GDOP (geometric dilution of precision) and number of available satellites during the survey.

Figure 3 shows the number of satellites and the PDOP for 
one of the surveying sessions and clearly depicts the difference 
between the status of operability of GPS and Galileo positioning 
systems. The spikes in PDOP plot are generally due to cycle-slips 
or temporary loss of tracking of one or more satellites. From this 
point on view the GPS constellation feature the best configuration. 

 The full acquisition, made with both the Septentrio AsteRx-U 
receiver and the MMS, took almost one hour per survey at a sam-
pling rate of 1 Hz. Septentrio AsteRx-U receiver acquired E1, E5a, 
E5b, E6 signals from the Galileo constellation. Before the begin-
ning of each survey, a static session was executed to initialize the 
fixing of the phase ambiguities before the beginning of the next 
trip. This was also necessary to fulfill the aim of testing all the 
possible signal acquisition conditions during the survey (further 
details can be found in the next section). Lastly, the data of the 
Marussi GNSS network were downloaded to perform the subse-
quent differential post-processed position computation. 

Data Processing and comparison method 
The data process chain, implemented in this paper, can be 

summarized in three macro-phases: 

a)	 Septentrio AsteRx receiver data differential position 
computation for the three considered constellations and for all 
the possible combinations;

b)	 MMS output computation;

c)	 Data filtering and comparisons.

As stated in the Introduction section all the comparisons were 
performed under the hypothesis that the MMS solution was more 
precise than the single differenced constellation solution. The sin-
gle constellation differential solution was achieved by means of 
the GrafNav v.8.80 Novatel software. 

Differential position computations
The aim of the differential position computations was to pro-

duce differential solutions for the whole set of Septentrio AsteRx 
acquired epochs and to perform the subsequent comparisons. 
Each computation was performed by using GrafNav v.8.80 Novatel 
software and using the selected permanent station data. 

The most important solution data for the selected configura-
tion file, are characterized for each epoch by: latitude, longitude 
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and ellipsoidal height; a quality flag (in this case 1 for a fixed solu-
tion and 2 for a float solution), the number of used satellites, all 
the variance and covariances related to the 3D solution uncertain-
ties. Lastly, all the geographic coordinates were projected in the 
UTM ETRS reference system using a specific software capability. 
This was made since we found more convenient to assess the com-
parison dealing with plane coordinates.

MMS output computation
POS LV system gives in output more than fifty data fields; the 

first one contains the main navigational data, computed in re-
al-time and referred to the origin of the vehicle reference system.

Among the computed data: positioning parameters (latitude, 
longitude, and ellipsoidal height), run distance, vehicle attitude 
(roll, pitch and yaw angles), speed respect to North, East and 
z-axes, accelerations (in the vehicle reference system), angular 
speeds, measurements rms.

POS/LV system is built to integrate the data acquired from the 
different sensors, monitoring their health, isolating the sensors 
showing degraded performances and re-configuring, convenient-
ly weighting data inputs, so to give in any case the best positioning 
and attitude values. Sensor errors are estimated on a continuous 
base using a Kalman filtering technique.

The system is calibrated thanks to the lever arms computing, 
to give the positioning data of any point of the vehicle. In order to 
compute the level arms and the reciprocal positions of the GPS 
antennas, a reflector-less total station has been used. 

The reference trajectory was computed by post-processing 
the integrated GPS/INS data surveyed by the MMS. For this aim, 
the Position and Orientation System Post-Processing Package 
(POSPac™) Mobile Mapping Suite (MMS™) was used [24]. POSPac 
MMS with IN‐Fusion™ technology (that provides a deep level of 
sensor integration and error modeling) provides multiple pro-
cessing modes to handle different combinations of rover and ref-
erence GNSS data. IN‐Fusion uses a centralized filter approach to 
combine the GNSS receiver’s pseudo range and phase observables 
with the IMU data. As a result, Applanix IN‐Fusion technology has 
continual access to all GNSS aiding information even if the GNSS 
receiver is tracking fewer than four satellites. Lastly, the provided 
geographic coordinates were projected in the UTM ETRS refer-
ence system.

The MMS output 3D trajectory computed using all the avail-
able satellites, was used as reference for the subsequent data fil-
tering and comparisons. 

Data filtering and comparisons
The comparisons were executed calculating epoch by epoch 

the differences between the computed solutions and the reference 
trajectory. Then, the Galileo results considered for the combina-
tions of 4, 5, and 6 satellites were compared and statistically as-
sessed with the analogous results of the GPS and the Glonass sys-
tems. From the POSPac™ solution (Figure 2) and using the ZUPD 

feature the kinematic epochs of the survey were identified. These 
epochs were used to extract the related kinematic part of the solu-
tions both for the MMS system and for all the previously filtered 
solutions [25]. 

Results

MMS trajectory and GrafNav results
The differential solutions computed using Novatel GrafNav v. 

8.80 software were achieved with a reference station close to the 
surveyed areas and belonging to the Marussi Friuli Venezia Giulia 
Region GNSS network. The reference station data (free of charge) 
used for the MMS solution already include Galileo acquisitions. 
The mean distance between the reference station and the vehicle, 
mounting both the MMS POS/LV system and the GS14 receiver, 
was less than 11,4km.

Moreover, a clear difference between the Galileo system, and 
the Glonass and GPS ones, relies on the cut-off angles associated 
to the best solution for each considered combination. This could 
be related to the increasing number of Galileo cycles slips (or loss 
of satellite tracking) occurred at lower elevation angles, whereas 
the opposite occurred for the other two constellations since the 
availability of many combinations with satellites characterized by 
high elevation angles. Moreover, the experimental results show 
for the GPS and Glonass constellations a high occurrence of good 
solutions achieved with the “fix and hold” method.

With regard the MMS solution, as the distance from the survey 
area and the nearest reference station (named “Trieste” and be-
longing to the “Antonio Marussi” network, managed by “Regione 
Friuli Venezia Giulia” [26]) was in the order of 11km, not requiring 
a network solution, the “IN‐Fusion Single Base Station Processing” 
mode was chosen, reaching centimetric rms both in planimetric 
and altimetric positioning. 

Comparisons results
The comparisons were performed in terms of    and   in terms 

of continuity discrepancy with respect the MMS solution consid-
ered as the reference. Precisely, the comparisons were executed 
only if for the same epoch, for the same type of solution (phase 
fixed solutions were separated from float solutions), and for the 
considered parameter (ΔE, ΔN, ΔH) were contemporary available 
at least one value for the Galileo solutions and at least one value 
for GPS or Glonass solutions.

The tests involved a huge amount data, produced to consider 
and compare the average behavior of all possible operative con-
dition. 

Table 1 shows, for the performed kinematic test, a strong ev-
idence of the better performance of the Galileo system, both for 
the planimetric and altimetric components. This experimental 
evidence becomes even stronger with the increasing of satellite 
numbers, regardless of the considered constellation. In particu-
lar, in the Galileo and GPS comparisons and Galileo and Glonass 
comparisons, the GPS system performed slightly better than 
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the Glonass system. Another important finding is the number of 
fixed solutions produced by the Galileo combinations. In fact, the 

reduced number of Galileo available satellites can lead to a very 
small available number of satellites combinations. 

Table 1: Comparisons in terms of ΔE (m), ΔN (m) and ΔH (m) between the Septentrio AsteRx-U and MMS trajectories for GPS, Galileo, GPS/
GLONASS, GPS/Galileo and GPS/GLONASS/Galileo in the urban context.

ΔN(m)

  GPS L1 L2 Gal E1 E5b GPS L1 L2 
GLO G1 G2

GPS L1 L2 
Gal E1 E5b GPS GLO Gal

MAX 16.48 14.55 5.94 15.77 20.83

MIN -5.62 -13.84 -6.04 -11.42 -11.81

MEAN 0.172 -0.089 0.175 0.033 0.114

STD DEV 1.216 1.061 0.652 1.233 0.829

epochs 3045 2435 3569 3589 3792

95% Accuracy 0.043 0.042 0.021 0.04 0.026

ΔE(m)

  GPS L1 L2 Gal E1 E5b GPS L1 L2 
GLO G1 G2

GPS L1 L2 
Gal E1 E5b GPS GLO Gal

MAX 13.24 1.04 8.74 13.29 3.54

MIN -3.13 -8.24 -6.27 -10.5 -10.23

MEAN 0.142 -0.151 0.17 0.043 0.054

STD DEV 1.042 1.131 0.764 0.847 0.508

epochs 3045 2435 3569 3569 3792

95% Accuracy 0.037 0.045 0.025 0.028 0.016

ΔH(m)

  GPS L1 L2 Gal E1 E5b GPS L1 L2 
GLO G1 G2

GPS L1 L2 
Gal E1 E5b GPS GLO Gal

MAX 24.95 13.67 24.06 17.51 23.01

MIN -2.26 -6.77 -3.55 -27.03 -25.96

MEAN 0.375 0.072 0.361 0.483 0.268

STD DEV 1.986 1.447 1.804 1.936 1.471

epochs 3045 2435 3569 3589 3792

95% Accuracy 0.071 0.057 0.059 0.063 0.047

Comparing the obtained solutions, we have strong evidence of 
the better Galileo performance characterized by planimetric solu-
tions closer to the MMS trajectory. 

From the altimetric point of view, the proposed scenario 
shows also a better performance of the Galileo system to respect 
to GPS and Glonass systems. This is more evident in the extra-ur-
ban environment than in the urban one, thanks to a higher num-
ber of acquired satellites.

Table 1 Comparisons in terms of ΔE, ΔN and ΔH between the 
Septentrio AsteRx-U and MMS trajectories for GPS, Galileo, GPS/
GLONASS, GPS/Galileo and GPS/GLONASS/Galileo in the urban 
context

Discussion
In this study, the comparison between the novel Galileo sat-

ellite positioning system and the GPS and Glonass systems is 

proposed for an urban kinematic survey. The GNSS data were 
acquired with a Septentrio AsteRx GNSS receiver and compared 
with the output obtained by a Mobile Mapping System (MMS) 
implementing an integrated high-performance GPS/INS mea-
surement. In particular, as far as the authors know, this is the first 
work that implements a precise MMS for the assessment of the 
kinematic performances of the Galileo system.

All the differential solutions were produced with the GrafNav 
v.8.80 Novatel software. Planimetric and altimetric results are 
very encouraging and should be considered, as stated by other 
authors (e.g. [3-5,10]), related also to the strong S/N ratios of the 
Galileo signals. The Authors, both as far as regards the planimetric 
and altimetric performances, have noticed an increasing perfor-
mance correlated to the increasing number of satellites, compared 
to the previous tests and showed in Table 1. 
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Conclusion
In this study, a big computational effort was produced to ana-

lyze different kinematic surveys carried out using multi-frequen-
cy and multi-constellation Septentrio GNSS receiver. The acquired 
data include a contemporary acquisition with an MMS equipped 
with a POS/LV produced by the Applanix corporation. The MMS 
acquisition was used as reference trajectory and the robustness 
of its solution is the most important hypothesis for the results 
shown in this study. In particular, this hypothesis can be consid-
ered always valid for this study since it was found by coupling the 
GNSS technology with precise inertial instruments. 

Moreover, thanks to the GNSS acquisitions of reference sta-
tions close to the surveyed areas was possible to implement 
post-processed differential solutions using GrafNav v.8.80 No-
vatel software. The performed comparisons were also analyzed 
by means of a statistical test. The results show a clear better, and 
statistically significant, planimetric and altimetric performance 
of the Galileo positioning system. From the showed results, it is 
possible to conclude that the novel system is very promising also 
alone, and in a disadvantaged comparison, was able to produce 
better planimetric and altimetric accuracies, in a kinematic sur-
vey, than the GPS and Glonass positioning systems. Future devel-
opment of this work can include other kinematic inter-constella-
tion comparisons, the evaluation of the robustness of velocity and 
acceleration estimation with the Galileo constellation and attitude 
estimations.
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