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Abstract

This paper introduces the simplified brightness-greenness-wetness (B-G-W) model for multi-temporal land dynamics and vulnerability 
analyses in coastal environments and searches for an optimal mapping solution based on Landsat images to support its applications. A 
comparative study using the machine-learning algorithm of Support Vector Machine (SVM) first evaluated different sets of input bands (DN, 
KTC transformation, and different indices) and compared pixel- vs. object-based approaches to select an accurate and robust classification 
approach. The adoption of a recently developed multi-scale analysis method helped to quantify and identify the optimal segmentation scale for 
object-based classification. The results indicated that pixel-based SVM classification based on KTC transformation produced the most reliable 
performance with an overall accuracy of 95.85% and a kappa value of 0.9333. In addition, object-based approach demonstrated no advantage 
in mapping fragmented landscapes with the B-G-W model. This research then applied the method to decadal land dynamics analysis in the 
Mississippi River bird’s-foot delta based on January images in 1973, 1983, 1994, 2003, and 2014. The vulnerability analysis through land-change 
frequency mapping indicates stable lands, most vulnerable areas, and vulnerable areas with potential for wetland conservation..
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Introduction
Coastal wetlands are among the highest productive 

ecosystems, supporting rich habitats for human settlements, 
plants, fish, shellfish, plankton, and other wildlife [1,2]. As an 
essential part of economic development, coastal wetlands host 
critical natural resources (e.g., oil, gas, salt, and seafood) and 
provide protective barriers from hazards [3,4]. However, these 
fragile landscapes are extremely vulnerable and dynamic due to 
various factors, including global warming, rise in sea level, land 
subsidence, floods, hurricanes, oil spills, salt-water intrusion, and 
human activities [1,5]. Therefore, timely mapping and analysis of 
land degradation and vulnerability is important to prevent land 
loss and to develop sustainable wetlands [1,6,7]. 

Land-cover classification based on remotely sensed imagery 
is a common approach for the analysis of land dynamics. 
However, users usually need to tailor classification schemes and 
methods to the specific needs of applications. As a result, many 
wetland classifications often involve considerable number of 
land-cover types and a tedious process for sample selection and  

 
classification. For example, Sanchez-Hernandez et al. [8] used 
Support Vector Machine (SVM) method to classify Landsat ETM+ 
images into eight types of coastal land covers: saltmarsh, fens, 
agriculture, forest, grazing marsh, sand, urban, and water. Chiu 
& Couloigner [9] classified Landsat ETM+ (Enhanced Thematic 
Mapper Plus) data into seven classification types including 
water body, deciduous forest, wetland, transitions of deciduous 
forest-wetland, mixed stand, transition of deciduous forest-
mixed stand, transition of wetland-mixed stand, and transitions 
of deciduous forest-wetland-mixed stand. For certain wetland 
studies, a smaller number of classes may be sufficient such as 
the four classes (emergent, woody, water and upland) used by 
Pantaleoni et al. [10] and the three classes (upland, wetland, and 
intermediate wetland) used by Augusteijn & Warrender [11]. 
As demonstrated above, the choices of land-cover schemes and 
names of classes vary greatly with needs from local environments 
or research teams, and the overall processes become increasingly 
time consuming with increased classes. On the other hand, notable 
applications and processes in coastal environments such as land-
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loss analysis, barrier island protection, beach nourishment, dune 
morphology, surface erosion, riverbed or bank stabilization, and 
wetland conservation share common interests in the interactions 
among three fundamental elements of soil, water, and the role of 
vegetation in sediment stabilization [12-15]. Therefore, there is a 
need for a simplified classification process appropriate for these 
types of coastal applications.

Existing methods closely related to land dynamics based on 
land and water include a standard classification method based on 
sharp land and water contrast in the spectral band of shortwave 
infrared in Landsat images [16]. This method first identifies land-
to-water breaks based on the spectral histograms of land and 
water in an image, enhances the land-to-water boundary through 
an edge-enhancement process based on aggregated reflectance 
values, and then separates land from water based on the selected 
thresholds. The Louisiana Coastal Area (LCA) Comprehensive 
Coastwise Ecosystem Restoration Study and the U.S. Geological 
Survey (USGS) have adopted this method for large-scale land-
change mapping [6,16,17]. However, this method may not yield 
satisfactory results when the boundary between land and water 
is spectrally vague, particularly due to such water status with 
high concentration of suspended sediments found in estuary and 
deltaic coastal environments.

Successful adoption of a simplified strategy in a similar 
environment indicate the feasibility to develop such a method for 
coastal applications. In urban environments, Ridd [18] introduced 
a vegetation-impervious-soil (V-I-S) model in year 1995 to 
simplify urban land-cover mapping based on three types of land 
covers: vegetation, impervious area, and soil. The V-I-S model 
has been widely adopted for urban sprawl and change analysis 
because of its simplicity and effectiveness [19-21]. Likewise, this 
research proposes to apply a simplified brightness-greenness-
wetness (B-G-W) model for the studies of land dynamics. Exposed 
land areas with high reflectance such as bare soil, impervious 
surfaces, and beaches has high Brightness (B) values. Areas 
covered by vegetation such as grass, marshes, and trees typically 
have relatively high Greenness (G) values. Water bodies such as 
oceans, streams, lakes, and ponds have relatively high Wetness 
(W) values. In fact, the use of similar classes for the Atchafalaya 
River Basin by Rosen & Xu [22] proved a suitable application of 
a B-G-W model for coastal-land-dynamics analysis. In their study 
of land and water dynamics, Rosen & Xu [22] first classified the 
Atchafalaya Basin in the Mississippi River Delta into twenty-five 
classes using unsupervised ISODATA classification. They then 
merged these classes into three wetland classes: barren land, 
vegetation, and water. Selecting a suitable and simplified method 
that can fully support the study of land dynamics based on the 
B-G-W model then becomes necessary.

The goal of this research is to promote the use of simplified 
B-G-W model for coastal land dynamics analyses and support 
it through developing an optimal classification approach 
based on comparative studies of existing strategies. Although 

various imagery such as MODIS [23,24], ASTER [10], SRTM 
[24], RADARSAT [25], SPOT [26], WorldView [27], and aerial 
photographs are applicable for coastal and wetland mapping, 
Landsat images are still the most commonly used data because of 
their wide accessibility with free access, suitable spatial resolution 
for local and regional analysis, and consistent historical archival 
[4,28,29]. Considering the simplicity of classification scheme, we 
select SVM classifier based on the proven records of robustness 
and effectiveness by numerous studies [30-32]. However, uses can 
adopt other classification methods if necessary. In this research, 
we focus on the optimal input bands from a combination of 
original bands and five sets of indices and comparison of pixel- 
and object-based classifications as well as the adoption of the 
multi-scale analysis to quantify optimal segmentation scales. 
The selected approach then formed the base for decadal land 
dynamics analysis for the Mississippi River bird’s-foot delta from 
1973 to 2014. Finally, we analyzed the spatial distribution of land 
loss and land gain and conducted vulnerability analysis based on 
frequency mapping of land changes.

Materials and Methods 
Study site and data

Figure 1: The study site is located in the Mississippi River 
bird’s-foot delta. The extent is illustrated in the Landsat 8 image 
downloaded in 2014 from the USGS website and illustrated in 
color infrared composed of Bands 3, 4, and 5.

The study site is located in the bird’s-foot delta of the 
Mississippi River in the state of Louisiana, and the test images 
covers an area of 10.3km2 as shown in Figure 1. The Mississippi 
River is the seventh largest river in the world and contains a large 
watershed network flowing from the north to the south of the U.S. 
and enters the Gulf of Mexico through the bird’s-foot delta and the 
Atchafalaya River [33]. Sitting in the flood plain of the Mississippi 
River, Louisiana possesses forty percent of the wetlands of the 
United States, which provide rich oil and gas resources, habitats 
for fishery and wildlife, and coastal shoreline protection [34,35]. 
However, these wetlands are suffering from an alarming rate 
of land loss in recent decades [35]. Land degradation and 
vulnerability are critical issues for wetland conservation. 
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Land cover features at the study site mainly include marshes, 
trees, barrier islands, water channels, and man-made structures. 
Human settlements and commercial structures dominant the 
narrow linear zone along the elevated levees. To analyze the land 
dynamics, this research first selected an optimal classification 
method based on the B-G-W model through a classification 
comparison based on the image taken in 2013 and then applied the 
selected method for decadal land dynamics analysis for the years 
of 1973, 1983, 1994, 2003, and 2014. Table 1 lists images, water 
level source, and hurricane information for the study site. One 

important consideration for quality control is to minimize impacts 
from external factors such as seasonal variations of vegetation 
status, weather (e.g. floods and cold fronts), water level, intervals 
between images, and cloud coverage. Due to frequent presents of 
heavy clouds in coastal environment, cloud-free Landsat images 
for the delta front are mostly available in October and January in 
some years. Therefore, this research selected cloud-free images in 
the winter season (January) with low water levels in consistent 
months and over a decadal interval [22]. Cloud-free images with 
consistent seasons were not available for denser interval of years.

Table 1: Description of data used in this research.

Data Category Date Sensor Resolution used for Clas-
sification Source

Landsat imagery

1/16/1973 Landsat 1 60m

USGS 
http://earthexploer.usgs.

gov/

1/15/1983 Landsat 4 TM 30m

1/21/1994 Landsat 5 TM 30m

1/14/2003 Landsat 5 TM 30m

10/24/2013 Landsat 8 30m

1/12/2014 Landsat 8 30m

Water level 
1973 Water gate Monthly average and mini-

mum Hourly
NOAA tides and currents 

records at Grand Isle Island1983-2014 Water gate

Hurricanes and storm 
surges

Memorable Gulf Coast hurricanes of the 20th century NOAA

List of Louisiana hurricanes (2000–present) Wikipedia

This research used atmospherically corrected data for the 
years 1983, 1994, and 2003 from the Landsat CDR Program and 
conducted atmospheric correction for new images in 2013 and 
2014 using the FLAASH method in ENVI software. Due to the 
limited number of bands for Landsat 1 images, the challenges 
in conducting atmospheric correction, and the limited impact 
of atmospheric classification on qualitative classification, data 
process for the image in 1973 used the original image and 
resample it to 30-meter-resolution to be consistent with the 
other images. These Landsat images are in Universal Transverse 
Mercator (UTM) projection, Zone 16 N, Datum WGS 1984.

Selection of classification method to support analysis 
of land dynamics based on the B-G-W model 

SVM classification algorithm

The SVM classifier in remote sensing is a non-parametric, 
supervised classification algorithm based on machine learning 
[31]. This research selects SVM for classification because of its 
proven robustness and reliability by many studies [30,36]. The 
algorithm finds hyperplanes to separate a given data set into 
different predefined classes. In a simplified scenario to separate 
two classes, SVM finds an optimal decision hyperplane with the 
widest region of separation defined by two parallel hyperplanes 
passing through the edges of class clusters from training samples 
[2]. Support vectors are the samples located on the parallel 

hyperplanes. Since many real world classification scenarios may 
not be linearly separable, the method extends the linear decision 
hyperplane to a non-linear one by adding a penalty parameter, a 
slack value to the distance constrain, and the use of kernel functions 
[2]. SVM algorithm further extend the two-class classification to a 
multi-class classification through one-against-one or one-against-
all strategies [31]. The multi-class SVM classification used in this 
research uses the Library for Support Vector Machines (LIBSVM) 
developed by Chang & Lin [37] for the open source data mining 
software of Weka (Waikato Environment for Knowledge Analysis) 
[2] and is available in ENVI software for wider applications. 

The SVM classification method gains its popularity through 
reliable classification accuracy and easy implementation [30]. 
However, to achieve its best performance, making a choice 
among multiple combinations between parameters and options 
of various kernel functions often overwhelms users [2]. Popular 
kernel functions mainly include four types of functions (linear, 
polynomial, sigmoid, and radial basis function [RBF]), among 
which polynomial and RBF kernels are relatively popular [2]. 
This research select a RBF kernel that requires a priori tuning 
of the kernel width (γ) and penalty parameter (C) through an 
optimization process called grid search in Weka [2,31]. For a 
thorough explanation of SVM and kernel functions, please see 
Kavzoglu & Colkesen [2]. Mountrakis, Im & Ogole [30] provided a 
general review of SVM application in the field of remote sensing.
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Multi-scale analysis for optimal segmentation scale

The initial step in object-based classification is to generate 
objects through segmentation or classification methods to group 
adjacent pixels with similar values into objects [38,39]. Different 
parameters applied in the segmentation procedure will generate 
objects with different scales in correspondence to variation of 
object size and heterogeneity. For example, a segmentation scale 
with higher heterogeneity generates bigger objects with pixels 
of larger value differences. As a result, selection of segmentation 
scales is often through trial and error approach and has a significant 
impact on the accuracy of the object-based classification. In 2011, 
a multi-scale analysis for unsupervised segmentation introduced 
the concept of a global score (GS) to evaluate the goodness of 
segmentation based on normalized weighted variance (Vnorm) 
and Moran’s I (MInorm) [38]. The scale with the lowest GS value 
indicates the optimal scale for segmentation. This research 
applied this multi-scale analysis to the selected Landsat images 
to identify the optimal scale for object-based classification and 
then selected the training and assessment samples based on these 
segmentation results.

Comparison of pixel- and object-based classification and 
accuracy assessment

Pixel- and object-based classifications work on different 
kinds of units (e.g., a pixel vs. an object of connected pixels), 
which raises a challenge for comparative studies. This research 
applied two main strategies to allow supervised training and 
accuracy assessment of pixel- and object-based classification 
results through comparable samples in corresponding locations. 
First, the multi-scale analysis described in the previous section 
used unsupervised segmentation to form object boundaries 
at the optimal scale. Second, the object-based classification 
method used a set of randomly selected samples for training 
and assessment, while the pixel-based method classified images 
based on the pixels located at the corresponding centers of the 
objects. However, these corresponding center pixels could be 
in arbitrary locations that were difficult to identify land cover 
classes. To ensure fair evaluation of pixel- and object--based 
methods, these pixel samples were adjusted to adjacent locations 
in correspondence to the object type when necessary [40]. Finally, 
quantitative accuracy assessments compared performance based 
on overall accuracy and kappa value, which is a common approach 
in remote sensing for classification comparison. The overall 
accuracy is the total number of accurately classified samples 
divided by the total number of samples without considering the 
classification accuracy of individual classes. As a result, overall 
accuracy may still be high even some classes have low accuracies. 
To compensate this limit, users often report kappa coefficient 
value calculated from the confusion matrix where individual 
classes with poor accuracy will have a significant impact on the 
kappa value. Congalton & Green [41] gave a detailed introduction 
about these accuracy assessment methods in remote sensing. 

Decadal land dynamics analysis for fragmented coastal 
wetlands

For dynamic analysis of fragile and fragmented coastal 
lands, classification accuracies may have a significant impact on 
perception of land dynamics, especially for the under-represented 
classes (e.g., soil in this research). Since the main components 
of land and water dynamics are soil, vegetation, and water in 
corresponding to the B-G-W model, the use of related indices may 
be a suitable and necessary approach to improving classification 
accuracy. For land-cover classification based on Landsat imagery, 
the most commonly used bands are the original or atmospherically 
corrected bands with digital numbers (DN). Other potential useful 
bands are indices related to vegetation, soil, and water (referred to 
as the three indices from here, as defined below) and the indices 
derived from KTC transformation [42]. 

In order to evaluate the optimal input bands for coastal 
land dynamics studies based on the B-G-W model, this research 
conducted pixel- and object-based classification with these three 
types of inputs: Landsat bands (referred to as DN), the three 
indices, and the KTC-transformed indices. The three indices 
used in this research are Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Built-up Index (NDBI), and 
Normalized Difference Water Index (NDWI). Developed by Rouse 
et al. [43] and widely used for vegetation mapping and land cover 
classification, NDVI calculates vegetation index using the near-
infrared (NIR) and red bands as illustrated in Equation (1). Zha 
et al. [44] presented an NDBI index for mapping urban-extent 
based on Landsat imagery as in Equation (2), which is sensitive 
to land overs with high reflectance such as soil, beach and roads. 
For NDWI, there are three variations as introduced by Xu [45]: 
NDWI, modified NDWI (MNDWI), and NDWIGAO. McFeeters 
[46] introduced the NDWI index using the green and NIR bands 
as expressed in Equation (3). Replacing the NIR band with the 
MIR band, Xu [45] modified this water index to the MNDWI using 
Equation (4), claiming reduction of noises from built-up land. 
NDWIGAO was developed by Gao [47] with a form similar to the 
NDBI index. Therefore, this research compared NDWI and MNDWI 
indices for the analysis of coastal land dynamics. Kauth et al. [48] 
developed the KTC transformation for Landsat MSS (Multispectral 
Scanner System) imagery to remove redundant information with 
high correlations and generate a new set of transformed indices 
of brightness, greenness, yellow stuff, and non-such. Crist & 
Kauth [49] then modified the indices for Landsat TM imagery as 
brightness, greenness, and wetness as illustrated in the following 
Equations (5)-(7). Since Landsat 8 imagery has spectrum ranges 
similar to Landsat 5 imagery, the same equations are applicable 
to the images acquired in 2013 and 2014 by replacing the band 
number with Bands 2, 3, 4, 5, 6, 7 in the corresponding order.
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Figure 2: The results of multi-scale analysis for the Landsat image acquired on October 24, 2013. This analysis used atmospherically 
corrected bands (B1-B7) with a spatial resolution of 30 meter. The lowest global scale value in each band is located at the scale of 90, 
indicating the best scale for object segmentation.

Table 2: Statistics of training and accuracy assessment samples used in pixel- and object-based classification comparison. The units are number 
of samples.

Class Training Samples Assessment Samples  Total Count

Soil 50 50 100

Vegetation 58 58 116

Water 124 123 247

Total Count 232 231 463

The bands used for land-cover analyses include four original 
bands of the 1973 image along with atmospherically corrected 
Bands 1-5 and 7 of Landsat TM images and Bands 1-7 and 9 
for Landsat 8 images. For a comparative study based on the 
2013 imagery, a multi-scale analysis based on multi-resolution 
segmentation first quantified the optimal segmentation scale 
based on the selected inputs (Figure 2). As adding panchromatic 

band with a higher resolution did not generate the lowest 
GS values at unified scale, classification process excluded 
panchromatic bands from input options. The segmentation scale 
in the horizontal axis is a unit-free parameter that will influence 
the size and heterogeneity of the derived objects [38]. In this 
study site, the scale of 90 generated the lowest GS score in each 
band and functioned as the parameter for the following object-
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based classification. From 6688 polygons, this research randomly 
selected approximately 10% of these polygons for training and 
accuracy assessment and used their corresponding pixels located 
in the geometric centers or adjacent pixels in the corresponding 

classes for pixel-based classification. As a result, this research used 
232 pixels for training and 231 samples for accuracy assessment 
as illustrated in Table 2.

Table 3: Comparison of pixel- and object-based SVM classification results and their parameters from grid search based on Landsat images taken 
on October 24, 2013.

Category Input Bands Cost, Kernel Width Overall Accuracy Kappa

Object

DN 222.0, 2-18.0 93.36% 0.8938

KTC 27.0, 2-23.0 95.67% 0.929

Three indices with MNDWI 23.0,25.0 95.02% 0.9203

Three indices with NDWI 223.0,25.0 95.44% 0.9268

Pixel

DN 26.0, 2-20.0 93.07% 0.8871

KTC 24.0,2-20.0 95.85% 0.9333

Three indices with MNDWI 220.0, 24.0 96.10% 0.9335

Three indices with NDWI 220.0, 25.0 93.94% 0.8947

Comparison of pixel- and object-based land-cover 
classification

This section compares pixel- and object-based classification 
using the SVM method with the RBF kernel function as illustrated 
in Table 3. For each classification experiment, a grid search 
method in Weka software determined the best parameters of 
cost and kernel width for the SVM method within a given search 
range through a cross-validation approach. Supposing there 
are n training samples, the cross-validation approach takes out 
one training sample for accuracy assessment and runs the SVM 
classification based on the remaining n-1 samples. Then the 
process throws that removed sample back into the training pool, 
selects a new sample, and conducts another classification until 
taking out every point once. As a result, there are a total number 
of n samples for accuracy assessment. This cross-validation 
approach can reduce the possibility of over-fitting and is especially 
useful for applications with a limited number of training samples, 
which is ideal for the fragmented coastal land-cover analysis in 
this research. The use of a grid search range for the exponent 
(as illustrated in Table 3) of the cost and kernel width optimizes 
search efficiency. Hsu et al. [50] selected a range of -5 to 15 for 

SVM based on the RBF kernel. This research used a range of -20 
to 20 with a maximum number of grid extensions of 3. Please 
refer to [2,50] for a detailed description of the kernel functions 
and parameters. Table 3 presents the best parameters for cost 
and kernel width based on the grid search results and the overall 
accuracy and kappa values for the pixel- and object-based SVM 
classification with different inputs. 

The comparative results in Table 3 shows that the use of KTC 
or three indices with MNDWI does improve overall accuracy 
around 2-3 percent in comparison to the results based on Landsat 
reflectance in DN. The highest accuracy appears to be the pixel-
based SVM classification based on the three indices with MNDWI. 
However, some obvious confusion between brightness and wetness 
occurred in areas in open water as inherited from the DNBI index. 
As the results based on KTC were more consistent and reliable 
and pixel-based classification provides comparable classification 
accuracy based on kappa value with a much simpler procedure, 
the pixel-based SVM classification based on KTC transformation 
was more preferable for the decadal land dynamics analysis in the 
Mississippi River bird’s-foot delta.

Decadal land dynamics analysis at the bird’s-foot delta

Decadal land-cover dynamics and statistics

Table 4: The grid search results and classification accuracy for decadal land classification in the Mississippi River bird’s-foot delta.

Year Input Bands Cost, Kernel Width Overall Accuracy Kappa

1/16/1973 DN 223, 2-13 99.08% 0.99

1/15/1983 KT 223, 2-18 99.57% 0.89

1/21/1994 KT 223,2-20 98.27% 0.93

1/14/2003 KT 221, 2-19 99.13% 0.93

1/12/2014 KT 223, 2-19 95.67% 0.89​

For decadal land dynamics analysis, this research conducted 
pixel-based SVM classification method validated in the above 

comparative session on images in 1973, 1983, 1994, 2003, and 
2014 based on KTC transformation. The two sets of training and 
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assessment sample locations for the 2013 image were applied 
to decadal images with their land-cover types verified from the 
corresponding images. Table 4 lists the grid search results with the 
best parameters for SVM classification and the overall accuracies 
and kappa values for the decadal land classification based on the 

B-G-W model. The classification results demonstrated overall 
accuracies over 95%, indicating reliable classification results for 
decadal land change analysis. Table 5 shows area statistics of 
land cover types in each year, and Figure 3 illustrates the spatial 
distribution of land cover types. 

Table 5: Decadal land-cover statistics at the bird’s-foot delta from 1973 to 2014. The units are km2.

Year Brightness Vegetation Brightness + Vegetation Wetness

1973 28.93 859.17 888.1 6426.86

1983 26.7 576.15 602.85 6712.1

1994 49.54 792.58 842.12 6472.84

2003 14.5 677.48 691.99 6622.97

2014 24.13 605.74 629.87 6685.08

Figure 3: The decadal land-cover classification results in the 
Mississippi River bird’s-foot delta. The area outlined in the 
box represents bare soil (brightness) followed by vegetation 
colonization since the year of 1994.

The decadal land classification results in Figure 3 and table 5 
indicate the following observations. 

a)	 The total land areas (brightness + vegetation) correlate 
highly with the vegetated areas. This means that bare lands rarely 
survive without vegetation cover, and vegetation plays a vital 
role in sediment stabilization in a fragile coastal environment 
frequently influenced by river discharge, windstorms, and 
hurricanes. 

b)	 As a minority class, brightness was mainly at three types 
of locations: beaches on barrier islands, levees, and sediment 
deposit at the mouths of river discharges. Since colonization 
of vegetation often follows sediment deposition to stabilize 
sediment, the locations of emerging soil or beaches often indicate 
areas of early land growth. A particular example in Figure 3 as 
outlined in the yellow box demonstrates that a notable area of soil 
located in the southwest river outlet present in the 1973 and 1983 
images was later stabilized by vegetation as seen in the 1994, 
2003, and 2014 images. 

c)	 Small yet concentrated soil patches appear in the images 
from 2014 showing human activities of sand berm construction 

for wetland restoration. In the recent decade, the alarming rate 
of land loss at the bird’s-foot delta has gained state and federal 
attention for coastal shoreline protection. The state of Louisiana 
conducted sand berm construction at four barrier islands 
(Pelican, Shell, Scofield, and Chandeleur Islands) in 2012 with 
funds from the 2010 BP oil spill. Some of these constructed sand 
berms disappeared quickly due to tides and waves and needed 
periodical nourishment. The outlined box 1 in Figure 4 shows the 
recent status in January 2014. The areas outlined in boxes 2 and 3 
in Figure 4 are reconstructed sand berms occurred more recently. 

Figure 4: A zoomed-in view of the newly constructed sand berms 
appeared in the classification results of 2014 as highlighted in 
the yellow boxes.

Spatial distribution analysis of land loss, land gain, and 
stable land

Coastal land loss is a major concern as nearly a third of the 
human population live in the coastal zones [51]. By combining 
vegetation and brightness classes into one land class, Figure 5 
provides decadal land dynamics map based on land and water. The 
results showed that the bird’s-foot delta had been experiencing an 
overall trend of land loss as demonstrated in Table 5 and Figure 
5. The land in 1983 had the most significant loss rate of 32.12% 
comparing to 1973. Although land in 1994 showed area increase 
comparing to 1983 but was still a 5.2% loss comparing to 1973. 
Significant and permanent land loss occurred at the upper river 
stream at the southwest side of the levee (areas include Barataria 
Bay, Bastian Bay, Adam Bay, Bay Pomme d’or, and Bay Jacques), 
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with the major land loss occurring between 1973 and 1983. This 
permanent land loss had been witnessed and confirmed by local 
fishermen at Buras, Louisiana, where nearby wetlands showed 
as large open water. Land change analysis by Barras et al. [16] 
confirmed major land loss in this area between 1978-1990 and 
scattered patches of land loss in the following decade. One of the 
major events occurring right before this examined time frame was 
the intensive construction of levees and guided drainage systems 

in the Barataria Bay and Breton Sound Basins between 1940 
and 1970 [52]. This construction significantly reduced sediment 
deposition in the area with a combined effect of land subsidence 
from compaction of the soft sedimentary layers. Consequently, 
in early 1980s the U.S. Army Corps of Engineers [52] reported 
significant saltwater intrusion in the Barataria Bay and Breton 
Sound Basins that resulted in killing freshwater marshes in the 
area and permanently convert the marshes to open water. 

Figure 5: The decadal land distribution in the Mississippi River bird’s-foot delta by combining vegetation and brightness classes into land. 

As one of the major driven factors of saltwater intrusion, the 
natural hazards of hurricanes further contributed to this land loss 
[16,53]. The major hurricane events occurred in the Gulf Coast 
between 1983 and 1994 and between 1994 and 20014 are listed 
in Table 6 for comparison [54]. Hurricane Frederic occurred on 
September 13, 1979 with a wind power up to 145mph. Hurricane 
Allen, which occurred on August 9-10, 1980, was a Category 5 (the 
strongest level recorded) event [55]. The land changes between 
2003 and 2014 in Figure 6 showed a concentrated area of land 
loss along the northeast river outlets. A likely cause for this could 
be frequent and intense hurricanes and the resulted salt-water 
intrusion. When compared to other periods, this recent decade 

had the highest number of hurricanes including the well-known 
destructive Hurricane Katrina [54,55]. Nine hurricanes occurred 
in these ten years as listed in Table 6. Among these hurricanes, 
Hurricane Katrina caused the most destructive flood event in the 
city of New Orleans in 2005. Katrina was a high Category 5 and 
then dropped to Category 3 when it moved inland. Numerous 
studies have reported severe land loss in coastal Louisiana due 
to Hurricane Katrina [56,57]. The associations between major 
hurricane events and the severe levels of land losses indicate the 
significant impact of hurricanes on coastal land dynamics. The 
results demonstrate that the classification results based on B-G-W 
model can directly support the analysis of land dynamics. 

Figure 6: The decadal land change analysis in terms of stable land, water, land loss, and land gain. 
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Table 6: List of major hurricane events from the year of 1973 to 2014 
based on historical records.

Period Hurricane Time 

1973-1983

Carmen August 29-September 10, 1974

Bob July 9-16, 1979

Frederic September 13, 1979

Allen August 9-10, 1980

1983-1994

Alicia August 18, 1983

Danny August 12-18, 1985

Elena September 2, 1985

Juan October 26-November 1, 1985

Bonnie June 23-28, 1986

Florence September 7-11, 1988

Gilbert September 16, 1988

Andrew August 26, 1992

1994-2003

Danny July 16, 1997

Isidore September 26, 2002

Lili October 2, 2002

2003-2014

Ivan September 23, 2004

Cindy July 5, 2005

Dennis July 10, 2005

Katrina August 29, 2005

Rita September 24, 2005

Humberto September 13, 2007

Gustav August 31, 2008

Ida November 10, 2009

Isaac August 29, 2012

To further analyze spatial distribution pattern of land 
dynamics, Figure 6 demonstrates the decadal land changes with 
grey color representing stable (unchanged) land, red representing 
areas of land loss, and green representing areas of land gain. These 
results showed uneven distribution of land change characteristics. 
In contrast to the significant land loss in the southwest side of 
the river levee as discussed in previous sections, significant land 
loss at the outskirts of the river outlets as outlined in the box 1 in 
Figure 6; however, obvious land gain occurred along the beginning 
portion of the river outlets where sediment deposit started. In 
addition, comparing to the main outlets in box 2, the outlets on 

the west side of the river are relatively stable than the outlets on 
the east side of the Mississippi River. The Breton Island further 
east are fading away and will likely disappear in few more decades 
if current trend continues. However, the wetland in northeast 
outlined in box 4 in Breton Sound is relatively stable in the past 
four decades. The land area along the main Mississippi River is 
most stable likely because of the protection of elevated terrain. 

Human activities such as fishing and dredging have no doubt 
played a significant role in the bird’s-foot delta. Morton and 
Barras [53] reported that the digging of trenches and navigational 
channels, modification of surface elevations in marshes, and 
disturbed wetland morphology could promote the formation of 
ponds and increase the degree of wetland fragmentation. Levee 
construction, river diversion controls, and water consumption in 
the upper stream of the river have significantly affected sediment 
discharge to the lower Mississippi River [5,24,58]. In addition, 
extensive discharge from agricultural fields has caused dead 
zones in the Gulf of Mexico due to a lack of oxygen, which has 
significantly altered habitat environment and accelerated land 
degradation [59]. 

Land-cover change frequency mapping for assessment of 
the level of land dynamics and vulnerability

Figure 7: Map of land change frequencies in the Mississippi 
River bird’s-foot delta.

The decadal land-cover mapping results in the previous 
section demonstrates land-cover status in ten-year intervals. This 
research presented an approach to the mapping of land-cover 
change frequency and applied the analysis for land vulnerability 
analysis. How frequently the land changes over time indicates a 
certain level of land dynamics in the area and provides valuable 
insights into land vulnerability and their spatial distribution 
patterns. Figure 7 is the result of land-cover change frequency 
mapping by counting the number of land-cover changes. For 
example, if a class changes from land to water, the time of change 
is 1. If the class changes again in the next decade, then the number 
is summed up to 2. The derived frequencies in this research 
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ranges from 0 to 4 as a total of 5 temporal images used. For the 
unchanged areas (frequency equal to 0), water is colored deep 
navy blue and land is colored a deep green. The areas changing 
at least one time are in colors as noted in the legend in Figure 7. 

The stable land areas (deep green color in Figure 7) represent 
the land unchanged over the past four decades. Therefore, 
government officials can optimize wetland conservation by 
directing more resources to other vulnerable areas with more 
land growth potential. Relatively fewer areas changed in all four 
periods (red), but areas changing two to three times existed widely 
in the study site, especially at the southwest region and along river 
outlets. The interpretation of this category may vary the sequences 
of the changes. When frequent changes occurred in early stages 
and remain unchanged in the later stage of the periods, this 
scenario might indicate permanent changes to the end land-cover 
type. If lands remain stable in early stages and change frequently 
in recent decades, the areas tended to be relatively vulnerable but 
might have the potential to change back to land as past changes 
had demonstrated such potential. Similarly, one time of land-to-
water change occurred in an early period meant permanent land 
loss due to no sign of recovery in recent decades, indicating the 
most vulnerable areas in the Mississippi River bird’s-foot delta in 
the past four decades. This was particularly evident in the upper 
areas to the southwest of levees. This mapping of land change 
frequency provides quantitative physical evidence regarding the 
times of land changes over the selected periods and temporal 
intervals. 

Discussion

This research compared the pixel- and object-based 
approaches in order to find the optimal method to support the use 
of B-G-W model for coastal land dynamics analysis. Determining 
segmentation scale is often a critical and challenging issue 
traditionally solved by a trial and error approach. This research 
experimented the unsupervised multi-scale segmentation analysis 
method developed in 2011 [38] and proved its effectiveness to 
determine the optimal scale parameter through the quantitative 
statistics of global score. Adding panchromatic image to the multi-
scale analysis resulted in disagreement of the lowest GS scores at 
different bands, suggesting a negative impact and exclusion from 
the multi-scale analysis. 

Comparison between the pixel- and object-based methods 
is a common topic when selecting proper approach for land-
cover classification. Since multiple studies have demonstrate the 
superior performance of object-based land-cover classification 
over pixel-based methods, one is likely to assume that object-
based methods perform better in most applications. However, 
for fragmented coastal wetlands, object-based methods do not 
necessarily generate better results for simplified B-G-W model. 
In fact, equal amounts (two out of the four input options) of best 
performance existed in pixel- and object-based classifications in 
this research when using the same input bands. Considering the 

challenges in determining a suitable scale and other parameters, 
the object-based land-cover classification approach is more 
complicated to implement comparing to the pixel-based methods. 
The results showed that the supervised-classification based 
on SVM and KTC transformed indices provide a robust and 
reliable result to support the B-G-W model-based land dynamics 
analyses. This method is easy to understand and implement as 
commonly used software such as ENVI support both SVM and 
KTC transformation. Users have the flexibility to opt to use other 
classification methods or input data if necessary. 

The extended decadal land change analysis demonstrated 
the convenient use of the proposed method to support land 
dynamics analysis and quantification of land vulnerability. 
When applying this tool for vulnerability analysis, the meaning 
of the change frequencies may vary with the sequences of land 
changes. Increasing the temporal scale (such as from ten years 
to five or even one year) can significantly increase the reliable 
interpretation of land dynamics. However, clouds-free Landsat 
images with consistent season and smaller year intervals are not 
available for this study site, which prohibits the test of higher 
temporal scale in this research.

Conclusion

Fragmented landscapes in coastal and wetland areas are 
often results of frequent disturbances from weather events and 
hydrological processes. This research adopted a simplified B-G-W 
model for coastal land dynamics mapping and vulnerability 
analysis based on decadal land changes. To seek optimal 
mapping solution based on the SVM classifier, a comparative 
study evaluated various combinations of input bands and 
pixel- vs. object-based classification methods. When compared 
to object-based classification, the results indicate that pixel-
based classification provides a reliable yet simpler classification 
approach for fragmented coastal landscapes based on B-G-W 
model. We compared three types of bands for classification: 
Landsat DN bands, KTC-transformed brightness, greenness, and 
wetness, and three indices of water, soil, and vegetation. Although 
the derived accuracies were compatible, the results based on 
KTC provided the most reliable and consistent performance. As 
a result, our comparative study indicated that the best approach 
was a pixel-based SVM classification through KTC transformation 
and B-G-W model. 

This research further validated and applied the method for 
decadal land change analysis and vulnerability assessment in the 
Mississippi River bird’s-foot delta. The results of decadal land 
dynamic analysis showed significant land loss in the southwest 
area near Barataria Bay and sediment deposit along major river 
outlets. Especially, the southwest outlet of the Mississippi River 
demonstrated a typical coastal land building process where 
vegetation colonization followed some early land development. 
In addition, three locations of sand berm reconstructions showed 
up in the 2014 classification results. Combing brightness and 
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vegetation into one land class can conveniently support land 
vs. water dynamics analysis based on stable land, land loss and 
land gain. Results provide valuable planning support for coastal 
land conservation. Finally, this research presented a method for 
mapping land change frequency to indicate the intensity of land 
dynamics and vulnerability. This change frequency provides 
three main information: areas with stable land for lesser efforts 
in land conservation; most vulnerable areas with either frequent 
land changes or low land change frequency yet nonreversible 
changes; and areas with wide distribution and moderate land 
changes representing the best candidates for land conservation 
as their past records demonstrated land growth potential. Overall, 
this research demonstrates the simplicity and effectiveness of the 
B-G-W model for coastal land dynamics and vulnerability analysis. 
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