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Abstract 

Nowadays the sign of climate change and its impact is revealing on different natural and manmade systems, in one or other ways. This study 
mainly deals to develop future climate change scenario for Wolikite using statistically downscaling of large-scale climate variables. Projection of 
the future climate variables is done by using Global Circulation Model (GCM) which is considered as the most advanced tool for estimating the 
future climatic condition. The Statistical Downscaling Model (SDSM) is used to downscale present and future daily precipitation and temperature 
using observed station data. Three future emission scenarios, RCP2.6 (low emission), RCP4.5 (intermediate emission) and RCP8.5 (high emission) 
are considered for three 30 years periods for near term (2020-2039), 2020’s mid-term (2040-2059), 2050’s end of century (2080-2099), 2080’s. 
The average annual minimum temperature will be increased by 3.3°C, 5.3°C and 9.0°C for rcp2.6, rcp4.5 and rcp8.5 scenario respectively towards 
the end of this century. Similarly, annual maximum temperature will be 7.0°C, 6.0°C, and 8.0°C. Under RCP2.6 the mean temperature increases by 
approximately 2°C at the end of the century relative to the baseline period. For RCP 4.5, which represents the moderate scenario, the projected 
increase in temperature is around 2.9°C. The ensemble models are broadly consistent in indicating the shortening the main rain seasons that 
means monomial rainfall shrinks and ranging from over eight months of rain to only three months (JAS) under all RCPs for all time horizon the 
station which requires water harvesting, effective and efficient utilization of water resource.
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Introduction

General Circulation Models (GCMs), which are widely used 
nowadays to simulate future climate scenarios. There are different 
techniques for down scaling large scale GCM outputs to small scale 
resolutions to use in other models. All the available techniques 
and rationale of downscaling are categorized under two broad 
groups, namely dynamic downscaling and statistical downscaling 
[1-3]. The dynamic downscaling is performed by Regional Climate 
Models (RCMs) or Limited Area Models (LAMs) at 0.5o x 0.5o or 
an even higher resolution that parameterizes the atmospheric 
processes. The RCMs utilize large scale and lateral boundary 
conditions from GCMs to produce higher resolution outputs that 
demands high competition time. The statistical downscaling 
techniques involve developing quantitative relationships between 
large scale atmospheric variables (the predictors) and local 
surface variables (the predictands).

Pragmatic downscaling starts with the premise that the 
regional climate is the result of interplay of the overall atmospheric 
or oceanic circulation as well as of regional topography, land-sea  

 
distribution and land use. As such empirical downscaling seeks 
to drive the local scale information from the larger scale through 
inference from the cross-scale relationship using some random 
or deterministic functions. In most cases, the regional climate is 
seen as random process conditioned up on a driving large scale 
climate regime. Therefore, the confidence that may be placed in 
downscaled climate change information is foremost dependent 
on the validity of the large –scale field from GCM. For instance, 
derived variables (not fundamental to the GCM physics but 
derived from the physics) such as precipitation are usually not 
robust information at the regional and local scale [4]. Conversely, 
tropospheric quantities like temperature or geo-potential height 
are intrinsic parameters of the GCM physics and are more skillfully 
represented by GCM.

Downscaling Methods and Tools 

The general circulation models (GCMs) used to simulate 
and project future climate with forcing by greenhouse gases and 
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aerosols, typically dived the atmosphere and ocean in to horizontal 
grid with a resolution of 2o latitude by 4o longitude, with 10 to 
20 layers in the vertical. In general, most GCMs simulate global 
and continental scale processes in detail and provide a reasonable 
accurate representation of the average planetary climate. Over the 
past decade ,the sophistication of such model has increased and 
their ability to simulate present and past global and continental 
scale climate has substantially improved .Nevertheless, while GCM 
demonstrates significant skill at the continental and hemispherical 
scale and incorporate a large portion of the complexity of the 
global system, they are inherently unable to represent local sub-
grid scale features and dynamics, such as local topographical 
feature and convective cloud process [5]. Moreover, GCM were not 
designed for climate change impact studies and do not provide a 
direct estimation of the hydrological response to climate change. 
For example, assessment of future river flow may require (sub-
scenarios) daily precipitation in the catchment even at station 
scales. Therefore, there is a need to convert GCM out put into at 
least a reliable daily rainfall series at the scale of the watershed 
to which the hydrological impact is going to be investigated. The 
method used to covert GCM output into local meteorological 
variables required for reliable hydrological modeling are usually 
referred to as downscaling techniques. There are two categories 
of climate downscaling methods namely dynamic downscaling 
and statistical downscaling [5,6].

According to [7] regardless of human action in the immediate 
future, the effects of climate change will persist for centuries. Along 
with the increase in mean global temperatures, precipitation, 
humidity, and cloudiness are also expected to increase. Globally 
averaged surface air temperatures are forecast to increase by 
1.4ºC to 5.8ºC by the year 2100 [7,8]. The frequency and intensity 
of extreme weather and climatic events will increase in many 
regions. As such, projected increases in precipitation may not be 
evenly distributed throughout the year. Rather, precipitation may 
occur in the form of more frequent intense storm events, which 
will result in high runoff levels and increased risks of flooding 
[9]. Higher temperatures will increase evapotranspiration. 
[10] Reviewed the current state of climate change science, 
reporting that mean global surface temperatures increased by 
about 0.7ºC during the 20th century, with 0.4°C to 0.5ºC of this 
change occurring since 1970. Historical precipitation trends are 
much less clear, because spatial and temporal distributions are 
characteristically much more variable than those for temperature. 
Available data suggest recent increases of 0.5%-1.0% per decade 
in mean annual precipitation on land in the mid- to high latitude 
regions of the northern hemisphere, with slight decreases in the 
subtropics [9,11-13]. The Atlantic hurricanes of 2004-2005 and a 
general trend of increasing storm damage.

Climate data encompass both point-based data (for specific 
climate stations) and gridded data (estimated from observations 
made at climate stations), as well as historical time series, climate 
normal (averages calculated over specified 30-year periods), 

and scenarios of past and future climate developed from GCM 
simulations.

The IPCC [8] proposed that simulations of the impacts of 
climate change should be based on a suite of GHG emissions 
scenarios, each of which would represent a plausible future 
“story” of human population change and economic growth. These 
are known as the special report on emissions scenarios [14]. The 
various groups working on GCMs around the globe have all been 
expected to carry out simulation experiments “forced” by some or 
all of these SRES scenarios.

The difference between RCPs and previous scenarios

In preparation for the Fifth Assessment Report 
(AR5), researchers developed a new approach for 
creating and using scenarios in climate change research. This new 
approach was motivated by the changing information needs of 
policy makers. For example the increasing interest in exploring 
different approaches to achieving specific climate change targets 
(such as limiting change to 2°C), and growing interest in a “risk 
management” approach that combines reductions in emissions 
and adaptation to reduce climate change damages.

Scientific advances also dictated the need for new 
scenarios. Since the Fourth Assessment Report (AR4) important 
improvements in climate models have been made. As the climate 
models became more sophisticated, more detailed input was 
needed. Simultaneously, models that are used in the production of 
scenarios have improved and more advanced input can therefore 
be provided [15,16].

a)	 RCP 8.5 – High emissions: This RCP is consistent 
with a future with no policy changes to reduce emissions. It 
was developed by the International Institute for Applied System 
Analysis in Austria and is characterized by increasing greenhouse 
gas emissions that lead to high greenhouse gas concentrations 
over time comparable SRES scenario A1 F1. This future is 
consistent with: Three times today’s CO2 emissions by 2100, 
Rapid increase in methane emissions, Increased use of croplands 
and grassland which is driven by an increase in population, A 
world population of 12 billion by 2100, Lower rate of technology 
development, Heavy reliance on fossil fuels, High energy intensity 
and no implementation of climate policies [15,16].

b)	 RCP 6 – Intermediate emissions: This RCP is developed 
by the National Institute for Environmental Studies in Japan. 
Radiative forcing is stabilized shortly after year 2100, which is 
consistent with the application of a range of technologies and 
strategies for reducing greenhouse gas emissions. Comparable 
SRES scenario: B2. This future is consistent with:- Heavy reliance 
on fossil fuels, Intermediate energy intensity, Increasing use 
of croplands and declining use of grasslands, Stable methane 
emissions, and CO2 emissions peak in 2060 at 75 per cent above 
today’s levels, then decline to 25 per cent above today [15,16].
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c)	 RCP 4.5 – Intermediate emissions: This RCP is 
developed by the Pacific Northwest National Laboratory in the 
US. Here radiative forcing is stabilized shortly after year 2100, 
consistent with a future with relatively ambitious emissions 
reductions comparable SRES scenario B1. This future is consistent 
with: Lower energy intensity, Strong reforestation programmes, 
Decreasing use of croplands and grasslands due to yield increases 
and dietary changes, Stringent climate policies, Stable methane 
emissions and CO2 emissions increase only slightly before decline 
commences around 2040 [15,16].

d)	 RCP 2.6 – Low emissions: This RCP is developed by PBL 
Netherlands Environmental Assessment Agency. Here radiative 
forcing reaches 3.1W/m2 before it returns to 2.6W/m2 by 2100. 
In order to reach such forcing levels, ambitious greenhouse gas 
emissions reductions would be required over time. Comparable 
SRES scenario: None. This future would require: Declining use of 
oil, Low energy intensity, A world population of 9 billion by year 

2100, Use of croplands increase due to bio‐energy production, 
More intensive animal husbandry, Methane emissions reduced by 
40 per cent, CO2 emissions stay at today’s level until 2020, then 
decline and become negative in 2100 and CO2 concentrations 
peak around 2050, followed by a modest decline to around 400 
ppm by 2100 [15,16].

Figure 1 illustrates the general approach of downscaling; 
firstly statistical downscaling is analogous to the “model output 
statistics” and “perfect prog” approaches used for short-range 
numerical weather prediction .Secondly, Regional Climate Model 
(RCM) simulates sub-GCM grid scale climate features dynamically 
using time –varying atmospheric conditions supplied by a GCM 
bounding a specific domain. Both approaches will continue to 
play a significant role in the assessment of potential climate 
change impacts arising from future increase in greenhouse gas 
concentration. The SDSM is the first tool of its type freely offered 
to the broader climate change impacts community.

Figure 1: A schematic illustrating the general approach of downscaling.
(Source SDSM manual version 4.2).

GCMs and Statistical Down Scaling Methods

Use of all available GCMs and emission scenario will result 
in a better understanding of climate change. However, due to the 
limited amount time available to complete the present study, this 
research deals with the output from CanESM2 model for RCP 
scenarios. Canadian Earth System Model CanESM2 combines 
the CanCM4 model and the terrestrial carbon cycle based on the 
Canadian Terrestrial Ecosystem Model (CTEM) which models 
the land-atmosphere carbon exchange. The concentrations of 
greenhouse gases and solar variability are based on the CMIP5 
recommendations. In addition, the effects of volcanic eruptions 
are included. CanESM2 is applied in this study because the model 
is widely applied in many climate change impact studies and it 

provides large scale daily predictor variables which can be used 
for Statistical Downscaling Model (SDSM) [16,17].

SDSM which is designed to downscale climate information 
from coarse resolution of GCMs to local or site level was applied 
here to downscale the precipitation, maximum and minimum 
temperatures for the study area. SDSM uses linear regression 
techniques between predictor and predictand to produce multiple 
realizations (ensembles) of synthetic daily weather sequences. 
The predictor variables provide daily information about large 
scale atmosphere condition, while the predict and described the 
condition at the site level. The main reasons to apply the SDSM 
model for the study are; it is widely applied in many regions of the 
world over a range of different climatic condition, It can be runs on 
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PC-based systems and has been tested on Windows 98/NT/2000/
XP, The availability of the software (i.e. new users can register 
and download freely the software package at https://co-public.
lboor.ac.uk/cocwd/SDSM/), Compared to other downscaling 
methods, the knowledge of atmospheric chemistry required by 

the SDSM is less, The required time for simulating the surface 
weather parameter is low and the ability of the model to permit 
risk/uncertainty analyses by using the generated ensembles [18] 
(Table 1).

Table 1: Relative strength and weakness of statistical and dynamical downscaling.

Statistical Downscaling Dynamical Downscaling

 S
tr

en
gt

h •	 Station–scale climate information from GCM-scale output.
•	 Cheap, computationally undemanding and readily transferable.

•	 Ensembles of climate scenarios permit risk/ uncertainty analyses.
•	 Applicable to ‘exotic’ predictands such as air quality and wave 

heights.

10-50km resolution climate information from GCM-
 scale output.

• Respond in physically consistent ways to different 
 external forcing’s. 

• Resolve atmospheric processes such as orographic 
 Precipitation. 

• Consistency with GCM.

 W
ea

kn
es

s 

Dependent on the realism of GCM boundary forcing 
• Choice of domain size and location affects results. 
• Requires high quality data for model calibration.

• Predictor-predictand relationships are often non–
 Stationary.

• Choice of predictor variables affects results.
• Choice of empirical transfer scheme affects results.

• Low–frequency climate variability problematic. 
• Always applied off-line, therefore, results do not 

 feedback into the host GCM. 

Dependent on the realism of GCM boundary forcing 
• Choice of domain size and location affects results.

• Requires significant computing resources. 
• Ensembles of climate scenarios seldom produced. 

• Initial boundary conditions affect results.
• Choice of cloud/ convection scheme affects 

 (precipitation) results. 
• Not readily transferred to new regions or domains. 
• Typically applied off-line, therefore results do not 

 always feedback into the host GCM.

 (Source SDSM manual version 4.2).

SDSM model setup

Predictor files: 

The SDSM predictor data files for the CanESM2 model are 
downloaded from the Canadian Institute for Climate Studies. The 
predictor variables of CanESM2 are provided on a grid box by 
grid box basis of size 2.5° latitude x 3.75° longitude. To represent 
the station data from the nearest grid box (BOX_014X_35Y) were 
downloaded from CICS for wolikite meteorological stations. This 
predictor is found in zip file format. When the zip file is opened 
the following climatic parameters are found.

a)	 NCEP_1961-2005: this directory contains 44 years of 
daily observed predictors’ data, derived from the NCEP reanalysis, 
and normalized (with respect to the mean and standard deviation) 
over the complete 1961-1990 period.

b)	 CanESM2_historical_1961_2005: this directory 
contains 44 years of daily GCM predictor’s data, derived from the 
CanEsm2 historical data experiment, and normalized over the 
1961-1990 period.

c)	 CanESM2_rcp2.6_2006_2100: this directory contains 
94 year of daily GCM predictor data, derived from the RCP2.6 
experiment, and normalized over the 1961-1990 period.

d)	 CanESM2_rcp45_2006_2100: this directory contains 
94 year of daily GCM predictor data, derived from the RCP4.5 
experiment, and normalized over the 1961-1990 period.

e)	 CanESM2_rcp8.5_2006_2100: this directory contains 
94 year of daily GCM predictor data, derived from the RCP4.5 
experiment, and normalized over the 1961-1990 period.

NCEP data which are re-analysis sets from the National 
Center for Environmental Prediction was re-gridded to match 
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with the grid system of CanESM2. These data are used for model 
calibration. Both NCEP and CanESM2 data have daily predictors. 
There exist 26 predictor’s variables in both NCEP and CanESM2 
which used for analysis [18]. 

At recent decade, the problem of climate variability and 
climate change, due to anthropogenic as well as natural processes, 
has come with daily bad news [19]. Drought, rain fall delay, fire 
damage and heavy and unexpected rain fall are climate related 
hazards that mainly faced and also total crop loss, reduced yield, 
reduced seeding quality, delayed maturity and increased crop 
pest/disease are the major climate impacts, [20].

Finally, this specific point location study using statistical 
downscaling model is aimed to fill the gap of the climate 
information of temperature and Precipitation, on the other hand, 
remained fairly stable over the last 50 years when averaged over 
the country. However, the spatial and temporal variability of 
precipitation is high thus large-scale trends do not necessarily 
reflect local conditions thus statistical down scaling provide the 
future monthly precipitation and temperature climate information 
under different RCPs for 2020’s, 2050’s and 2080’s time horizon. 

Materials and Methods 

Site description 

Wolkite the administrative center of the  Gurage Zone  of 
the Southern Nations, Nationalities and Peoples’ Region (SNNPR), 
this town has a latitude and longitude of 8°17′N 37°47′E and an 
elevation between 1910 and 1935 meters above sea level, is in the 
part of the nine regions of Ethiopia.

Research design

The observed temperature and precipitation data of the 
station was obtained from national Meteorology Agency. The 
NMA provide statistical dataset of daily or monthly precipitation 
and temperature. These data covering form the period of 1988 
to 2018. After collecting the necessary data filling of missed data 
and quality checking was be made. GCM have been developed to 
simulate the present climate and have been used to predict future 
climatic change but GCM are at high resolution and there need to 
be downscale the results from such models to individual sites or 
localities for impact studies using SDSM. Atmospheric large scale 
variables (CanESM2 Predictors) was downloaded from IPCC’s 
Fifth Assessment Report (AR5) CMIP5/ Coupled Model Inter-
comparison Project, Phase 5 (CMIP5)/ a collaborative climate 
modeling process coordinated by the World Climate Research 
Programme (WCRP). 

The second generation of Earth System Model CanESM2 is 
the fourth generation coupled global climate model developed by 
the Canadian Centre for Climate Modelling and Analysis (CCCma) 

of Environment Canada (http://climate-scenarios.canada.
ca/?page=pred-canesm2). SDSM permits the spatial downscaling 
of daily predictor-predictand relationships using multiple linear 
regression techniques. The predictor variables provide daily 
information concerning the large-scale state of the atmosphere, 
whilst the predictand describes conditions at the site scale. 

SDSM description 

The first step before model calibration was quality control 
using SDSM through identification of gross data errors, missing 
data codes and outliers to get the appropriate quality data. The 
screening Predictor variables will be done by trial and error 
procedure for model calibration. Using the partial correlations 
statistics, predictors which showed the strongest association 
with the predictand will be selected. Assembly and calibration 
of statistical downscaling model(s) the large-scale predictor 
variables identified are used in the determination of multiple 
linear regression relationships between these variables and the 
local station data. Then SDSM manual procedure will be followed 
to generate climate scenario for the basins.

Data source

Observed daily precipitation and maximum and minimum 
temperatures data will be obtained from weather stations located 
in or near the watershed. National Centre for Environmental 
Prediction (NCEP) data will be generated for missing data filling 
and GCM-derived predictors will be generated form global data 
base. Climate data was downscaled using SDSM. The data was 
analyzed and tested using trend analysis Man Kandell.

Screening of Potential Downscaling Variables	

Screening of the potential predictors for the selected 
predictand (i.e. observed precipitation, minimum and maximum 
temperature) were used to select the appropriate downscaling 
predictors for model calibration and the most crucial and decisive 
part in statistical downscaling model. Identifying an appropriate 
large-scale gridded predictor’s result in good correlation between 
observed and downscaled climate variables during model 
calibration and scenario generation. The recommended methods 
for screening the potential predictors is starting the processes 
by selecting seven or eight predictor at a time and analyze 
their explained variance, then select those predictor which has 
higher explained variance (The significance level which tests the 
significance of predictor-predictand correlation was set to the 
default P<0.05) and drop the rest.

For the selected predictor analyze or calculate their 
correlation matrix with the observed predictand, this statistics 
identify the amount of explanatory power of the predictor to 
explain the predictand and finally the scatter plot is carried out in 
order to identify the nature of the association (linear, non–linear, 
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etc.), whether or not data transformation(s) may be needed, and 
the importance of outliers. This procedure is repeated by holding 
those predictors which passé the above criteria and add new 
predictors from the reset of available predictors.

SDSM Model Calibration, Validation and Scenario 
Generation

The model calibration operation takes a selected predictand 
along with a set of predictors variables and computes the 
parameters of multiple regression equations via an optimization 
algorithm (either dual simplex of ordinary least squares). There 
are options in SDSM model structure to perform calibration 
process either monthly, seasonally, or annual time scale. Selecting 
one of these model type decide how the regression parameters 
are developed (for example if a model type monthly is selected, 
then the model develops one regression equation for the whole 
months and if annul model type is selected again one regression 
equation is developed for the whole one year and so on). For this 
study among the total period length of 1988-2003, 15 years of 
daily data was used for model calibration and the rest 15 years 

(2004-2018) daily data was used for model validation using a 
monthly model type.

The Weather Generator operation generates ensembles (up 
to a maximum of 100) of synthetic daily weather series given 
observed (or NCEP re–analysis) atmospheric predictor variables. 
The procedure enables the verification of calibrated models (using 
independent data) and the synthesis of artificial time series for 
present climate conditions.

The Scenario Generator operation produces ensembles of 
synthetic daily weather series from the starting of the baseline 
period to the end of the next century(1961-2100) for a given 
daily atmospheric predictor variables supplied by a GCM (either 
under present or future greenhouse gas forcing). This function is 
identical to that of the Weather Generator operation in all respects 
except that it may be necessary to specify a different convention 
for model dates and source directory for predictor variables.

The structure and operations of SDSM can be best described 
with respect to seven tasks as indicated in bold box in the following 
Figure 2 [18].

Figure 2: SDSM (version 4.2) Climate scenario generations.
(Source SDSM manual version 4.2).

 

Results and Discussion

Observed and downscaled monthly mean temperature 
and Precipitation

Minimum temperature 

The monthly minimum temperature downscaled for NCEP in 
the baseline period for Wolkite meteorological station is shown 
in Figure 3.

The result of downscaling minimum temperature indicates 
that there is less agreement between observed and simulated 
minimum temperature compared to nearest meteorological 
station minimum temperature this is due to less quality of station 
data. As shown in Figure 4: it was also found that, during the 
month of May and Jun the model error is negligible. However, for 
the rest of the months the model overestimates. The model error 
in each month is less than the projected temperature change in 
the future. 
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Figure 3: Comparison of observed and predicted mean minimum monthly temperatures for the period (1988-2003) at wolkite station. 

Figure 4: Absolute model errors in estimate of monthly minimum temperature.

Maximum temperature

The monthly maximum temperature downscaled for NCEP in 
the baseline period is shown in Figure 5.

The result of downscaling maximum temperature indicates 
that there is a very good agreement between observed and 
simulated maximum temperature. However as shown in Figure 
5 the model underestimates maximum temperature during the 

month Jan and Nov. however the model overestimates for the rest 
of the months except Jan and Nov. 

Precipitation

As shown in Figure 7 below the result of downscaling Wolkite 
station precipitation indicates that there is an excellent agreement 
between observed and simulated precipitation this is due to good 
quality of data.

Figure 5: Observed and downscaled monthly mean maximum temperature for Wolkite meteorological station.
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Figure 6: Absolute model error in estimate of monthly maximum temperature.

Figure 7: Downscaled and observed mean monthly precipitation (1988-2003).

The downscaled precipitation underestimates during the 
month of May, Jun, Jul, Aug and Oct and overestimates for the 
remaining months. 

Results indicate that the models replicate observed inter-
monthly and inter-annual variability faithfully, achieving 
maximum correlations of the order of 0.98 for temperature (Figure 
7) and 0.79 for rainfall (Figure 8) leaving residuals whose variance 

is much less than the variance of the raw data. The performance 
of the SDSM is almost as very good over the verification period 
as it is over the calibration period, indicating that the empirical 
model has not been over-fit to the data. Moreover, calibration and 
validation of maximum and minimum temperature result show 
better correlation coefficient as compared to rainfall.

Figure 8: Absolute model errors for the downscaled precipitation.
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Anomalies of Climate variable under different RCPs 
emission scenarios 

Minimum temperature anomaly

The Figure 9 shows that a negative anomaly will be observed 
in 2020’s and 2080’s time horizon under RCP 2.6 for the months 

JJAS and FMA respectively.

As indicated Figure 10 & 11 below most of dry months revealed 
that a positive anomaly in the 2050’s time horizon. Under worst 
scenario (RCP8.5) only April and July show negative anomaly for 
time horizon of 2080’s this indicates that the observed minimum 
temperature was cooler than the long- term mean value.

Figure 9: Minimum temperature anomaly under RCP 2.6 of wolikite.

Figure 10: Minimum temperature anomaly under RCP 4.5 of wolikite.

Figure 11: Minimum temperature anomaly under RCP 8.5 of wolikite. 

Maximum temperature Anomaly

A positive anomaly indicates that the observed temperature 

was warmer than the long- term mean under RCP2.6 (Figure 12) 
below observed Tmax increase JJAS for all time horizon but for the 
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rest months negative anomaly which indicates the observed Tmax 
is cooler than long term mean.

In Figure 13 below under RCP4.5 observed Tmax has positive 
anomaly for months JJAS for 2020’s, 2050’s and 2080’s. While, a 

negative anomaly indicates that the observed temperature was 
cooler than the long- term mean value for months JFMA under 
intermediate emission scenarios and High emission scenarios 
Figure 14 below. 

Figure 12: Maximum temperature anomaly under RCP 2.6 of wolikite.

Figure 13: Maximum temperature anomaly under RCP 2.6 of wolikite.

Figure 14: Maximum temperature anomaly under RCP 8.5 of wolikite. 

Precipitation anomaly

In the Figure 15 below shows that under RCP 2.6 Positive 
anomaly for most of months which means the observed 

precipitation is above the long-term normal for those months, and 
the negative anomaly were only for few months (JJA) but for June 
the negative anomaly will be on 2050’s time horizon. 
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Figure 15: Precipitation anomaly under RCP 2.6 of wolikite.

Under emission scenario RCP 4.5 (Figure 16) below the 
negative anomaly was found only for June and July for all three-
time horizons, for months August and September negative 

anomaly for 2020-time horizon. This is similar for emission 
scenario under RCP8.5 but the difference on percent of above 
normal and below normal (Figure 17) below. 

Figure 16: Precipitation anomaly under RCP 4.5 of wolikite. 

Figure 17: precipitation anomaly under RCP 8.5 of wolikite. 

Projected future climate variables (scenario 
generation)

After tedious the calibration and validation of SDSM model, 
carried out, the daily future climate variables are projected for 

the next century using the CanESM2 Global Circulation Model. 
The projection generates 20 ensembles of daily climate variables, 
which are equally plausible; hence, these ensembles were 
averaged out in order to consider the characteristics of all those 
20 ensembles. With the aid of statistical downscaling model the 
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GCMs global predictors were used for development of future 
climate scenarios and the analysis was made for 2020s, 2050s and 
2080s under RCP2.6, RCP4.5 and RCP8.5 (different representative 
concentration path way scenarios).

Minimum temperature

The downscaled minimum temperature shows an increasing 
trend in all future time horizons for RCP2.6, RCP4.5 and RCP8.5 
scenarios for the stations. The downscaled minimum temperature 
in 2020s indicated that the minimum temperature will rise by 
0.90C under RCP2.6 scenarios. For the same time horizon under 
RCP4.5 scenario the minimum temperature will rise by 1.20C for 
wolkite meteorological stations. Under RCP8.5 it will increased by 
1.30C. In 2050s the increment will be 4.60C for the station. The 
increment will be expected to be high in 2080s, by 3.30C, 5.30C and 
90C under RCP2.6, RCP4.5 and RCP8.5 scenarios respectively. 

Maximum temperature

Similar to projected average monthly minimum temperature, 
maximum temperature also reflects increasing trend in future 
climate periods. The projected maximum temperature in 
2020s-time horizon indicated that maximum temperature 
would rise by 0.40C, 0.80C and 1.50C under RCP2.6, RCP 4.5 and 
RCP 8.5 respectively. In 2050s the increment will be 2.30C under 
RCP2.6, 2.90C under RCP4.5 and 3.90C under RCP8.5 scenarios 
for Jimma station. The highest maximum temperature rise will 
be expected under RCP2.6 by 20C, RCP4.5 by 30C and RCP8.5 by 
4.60C for Wolkite station. In 2080s the maximum temperature will 
be increased by 70C, 60C and 80C under RCP2.6, RCP 4.5 and RCP 
8.5 scenario respectively. This shows that the future period will 
experience increasing trend in maximum temperature under all 
three representative concentration pathway scenarios. However, 
the increments will be less for RCP2.6 scenario relative to RCP8.5 
scenario.

Precipitation

The projected mean annual precipitation in 2020s the stations 
were indicated that mean annual precipitation will decrease by 
5%, 5.4% and 5% under RCP2.6, RCP4.5 and RCP8.5 respectively. 
In 2050’s the minimum decrement will be expected under RCP2.6 
by 2.3%, RCP4.5 by 2.8% and RCP8.5 by 3% for Wolkite station. In 
2080’s time horizon the projected precipitation will be decreased 
by 5.9% under RCP2.6 scenario and under RCP4.5 scenario it will 
be decreased by 5.6%. For the worst scenario (RCP8.5) the future 
precipitation will be expected to decrease by 5.9% for stations. 
Overall, the three scenarios of CanESM2 projected a lessening 
trend in the annual precipitation.

Conclusion and Recommended

The results of the climate projection showed that Statistical 
downscaling model is able to replicate the observed and simulated 
maximum and minimum temperature well; however, precipitation 

couldn’t able to replicate well this is due its conditional nature and 
high variability in space and time.

The average annual minimum temperature will be increased 
by 3.3°C, 5.3°C and 9.0°C for rcp2.6, rcp4.5 and rcp8.5rcp scenario 
respectively towards the end of this century. Similarly, annual 
maximum temperature will be 7.0°C, 6.0°C, and 8.0°C. This also 
will increase with from lowest to highest emission scenarios.

The ensemble models are broadly consistent in indicating 
the shortening the main rain seasons that means monomial 
rainfall shrinks and ranging from over eight months of rain to 
only three months (JAS) under all RCPs for all time horizon for 
Wolikite station which requires water harvesting, effective and 
efficient utilization of water resource and mitigation activities. 
The results from localities study used for different impact studies 
and development plan.
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