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Introduction

A “critical mineral” is defined as a substance that serves an 
essential function in manufacturing product(s), whose supply 
chain is vulnerable to disruption, and the absence of which could 
lead to substantial consequences for the country’s economy or 
national security [1,2]. The demands of CMs, including lithium, 
nickel, cobalt, graphite, and rare earth elements (REEs), are soaring 
because of their essential role in clean energy transmission and 
storage technologies. Clean-energy technologies generally require 
more CMs than conventional fossil fuel-based technologies. For 
instance, an electric vehicle uses five times the amount of minerals 
compared to a combustion-engine vehicle, and a windmill requires 
eight times the minerals needed by a gas-fired power plant with 
the same capacity [3]. The push for ‘greener’ energy generation  

 
(wind, solar and geothermal) and related storage solutions could 
result in a demand of 3 billion tons of minerals and metals and a 
500% increase in the production of CMs such as graphite, lithium, 
and cobalt and a by 2050 [4].

One of the biggest challenges is that the production of 
different CMs is concentrated in a few countries. For instance, 
>80% of Pt is produced by South Africa and Zimbabwe, Australia 
and Chile produce > 75% of all Li, 75% of Co is produced by 
Dominion Republic of Congo (DRC) [5-9]. For a few other CMs, 
a single country controls more than 50% of global production 
(e.g., China for REEs, Australia for Li, DRC for Co, South Africa 
for Pt) [6]. The US currently has no domestic production for 
fourteen out of thirty-five CMs and produces less than 50% of net 
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demand for seventeen other CMs [10]. Due to such low in-house 
production, the US is mainly dependent on imports from other 
countries to meet its demand (e.g., 80% REEs imported directly 
from China). The increasing demands of CMs could drive global 
geopolitics and result in trade wars in the near future. Therefore, 
individual countries need to develop and enhance their national 
CM resources and supplies in an environmentally responsible 
manner.

Strategies for Developing CM Industries

Countries with CM resources need to make serious 
investments in developing a sustainable supply chain for CMs 
and creating future growth capacity. The governmental agencies 
play a crucial role in evaluating the CM resources and funding 
the academia-industry consortia for applied and basic research 
related to CM and REEs. There is a need to improve understanding 
of the geological and geochemical controls on CM enrichment in 
particular basins, rocks, fluids, etc. For example, coal and coal by-
products (including run-of-mine coal, coal refuse, coal ash, acid 
mine drainage) are critical resources for CM and REEs. However, 
there are only a few studies on efficiently extracting CM and REE 
from these resources [11-13]. There is a vital need to develop 
geological models of ore occurrence, mineral processing, and 
extractive metallurgy [5]. Funding in geosciences, geochemistry, 
and chemical engineering should target the development of new 
tools for the exploration and efficient extraction of CMs. Further, 
new investments should be made in technologies that treat the 
leftover material from mining as a resource, develop urban mining 
techniques and find substitutes of CMs that are low in abundance 
[3]. 

Another useful strategy would be the recovery of CMs via 
effective recycling of industrial and electronic waste. It is estimated 
that each year ~50 million metric tons of e-waste are disposed in 
landfills worldwide, and only 12.5% of e-waste is currently being 
recycled for all metals [14]. Studies on life cycle assessments 
of CMs such as REEs have indicated that recycling electronic 
waste could be an encouraging supplement to conventional 
production processes [15]. An example of recycling iPhones can 
easily demonstrate the effectiveness of recycling in meeting the 
CM demands. Recycling of 10,000 iPhones has the potential to 
yield 190kg of aluminum, 77kg of cobalt, 71kg of copper, 9.3kg 
of tungsten, 4.2kg of tin, 1.1kg of REE, 0.75kg of silver, 0.18kg of 
tantalum, 0.097kg of gold and 0.01kg of palladium [16]. Boosting 
recycling technologies for lithium-ion batteries [9] could also 
contribute to CM and REE recovery from waste.

There is also a need to develop a skilled workforce to generate 
and maintain sustainable CM supply chains. Each CM ore or 
deposit is unique and requires different mining and processing 
technology. Therefore, even if we have sufficient resources, 
we need skilled scientists/workforce to resolve these complex 
issues. However, in countries like the US, there has been a steady 
decline in mining industry employment from 25,000 employees 

(3,750 with science degrees) in the 1980s to 1,500 with only 250 
employees holding science degress [5]. Therefore, it is essential to 
create a workforce pipeline by engaging and training students at 
the college level in CM exploration, mining, and processing.

Finally, to promote the engagement of private companies in 
the CM industry, the governments should consider stockpiling, tax 
credits, and loan guarantees to reduce the risks associated with 
CM mining and processing. These targeted investments in CM 
research, mining, production, waste recovery, and recycling could 
potentially change the CM economics of countries and make them 
competitive with large producers like China.

Limiting Environmental Impacts of CM Industries

Although CMs support developing green energy technologies, 
their extraction, separation, and development can severely 
impact the environment and human health. The severity of these 
impacts can vary with mining operations, type of ore, processing 
of the mineral ore, local geology, and hydrogeology of the area. 
For example, lithium mining, processing, and manufacturing 
of lithium-ion batteries could have significant environmental 
impacts such as water depletion and pollution, increased toxicity 
on plants and animals, land subsidence, carbon emissions [17-
19]. The process of REE extraction has also been reported to use 
harmful chemicals that generate high volumes of solid waste and 
wastewater [14]. Dumping of e-waste and improper treatment 
methods has been shown to leach large amounts of CMs and 
several other toxic elements in the soil and groundwater, especially 
in developing countries like Ghana, India, and China [20-22]. 
Cobalt mining in DRC has been criticized for using child labor and 
other irresponsible mining practices [9]. A biomonitoring study 
of cobalt mining in DRC reveals a substantial exposure of Co, 
especially in children, and the urinary concentrations of Co were 
found to be the highest ever reported for a general population [23]. 
These case studies indicate that high concentrations of CMs can 
be released in soil and water during CM mining and processing. 
However, there is still minimal understanding of the impact of 
the majority of the CMs on human health [14]. For instance, the 
maximum acceptable limits for CMs and REE in drinking water are 
still not available from environmental agencies and international 
health organizations. Therefore, is a critical need for regulatory 
agencies to develop and enforce permissible limits of CMs in water 
and soil. The impact of CM mining on sediment loads in regional 
watersheds and associated adverse effects on local flora and fauna 
also need to be assessed. Also, comprehensive remediation plans 
need to be implemented to effectively treat acid mine discharges 
and fully restore the mined areas. In addition, fine particulates, 
aerosols, volatiles and radioactive materials need to be monitored 
and regulated in CM and REE mining and processing facilities to 
limit human exposure and associated health hazards. Countries 
need to develop robust environmental policy frameworks to 
ensure that the development of CM industry creates no major 
threats to the environment and human health. 
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Concluding Remarks

The development of an environment-friendly sustainable 
supply of CMs faces several challenges. The governmental 
agencies, industries, academicians, and environmental advocacy 
groups need to work together to ensure appropriate policies 
and incentives are put in place to develop the CM industry. The 
government needs to invest in research, infrastructure, and 
workforce development to address the mining, processing, and 
maintaining supply chains of important CMs. The governmental 
agencies also need to ensure that adequate environmental policy 
and regulatory framework are developed and enforcement plans 
are put in place  before expanding the CM industry. The industry-
academia consortiums need to work together to explore innovative 
methods for improving the efficiency of mining, extraction, 
production, and recycling of CMs and ensuring these methods 
have minimal environmental impacts. This multi-stakeholder 
approach will resolve complex issues surrounding the economic 
development of CM industries and create comprehensive 
environmental checks and solutions.
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