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Introduction

The importance of weather forecasts relies on a variety of 
activities and users, including weather warnings to protect life 
and property, agriculture, management and planning of outdoor 
events etc. The association between meteorological conditions 
and human health is also an important aspect that has been widely 
studied. Royé et al. [1,2] indicated that apparent temperature 
[3] has a strong non-linear relationship with Ischemic Stroke 
and cardiovascular health. Associations between temperature 
and cardiovascular mortality have been reported by Basu et al. 
[4], while Alessandrini et al. [5] showed a strong relationship 
between biometeorological conditions and ambulance dispatches 
in Emilia–Romagna, Italy. Alessandrini et al. [5] found that 
ambulance dispatches increase 1.45% (non-traumatic diseases) 
and 2.74% (respiratory diseases) for every 1°C increase in the 
mean apparent temperature between 25° and 30°C. An overall 
increase of 0.9% in mortality per 1°C increase in AT was observed 
by Wichmann [6] and, more recently, Niu et al. [7] showed that low 
and high AT are significant risk factors of mental and behavioral 
disorders. 

It is also well-known that environmental factors play an 
important part in the spread of certain virus diseases [8], most  
particularly for Influenza and other respiratory viral infections 
[9]. Previous studies indicate that low temperature and low 
humidity contribute to the increased risk of seasonal influenza 
[10-13]. Xiao et al. [14] and Zhang et al. [15] argue that the 
outbreak of influenza A (H1N1) had significant correlation with 
meteorological conditions. A similar relation for human rotavirus 
infection was described by Moe and Shirley [16], Brandt et al. 
[17], Konno et al. [18], Anestad [19], and Reyes et al. [20], with a 
stronger influence of temperature compared to humidity. Chan et 
al. [21] concluded that SARS coronavirus viability is lost at high 
temperatures above 38°C and high relative humidity above 95%, 
and Darniot et al. [22] similarly found that low temperatures 
influence human metapneumovirus (hMPV) and respiratory 
syncytial virus (RSV) activity.

Regarding the recent Coronavirus disease 2019 (COVID-19), 
Wang et al. [23] initially found that one-degree Celsius increase 
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in temperature and one percent increase in relative humidity 
lower daily effective reproductive number of COVID-19 by 0.0383 
and 0.0224, respectively. In agreement with Wang et al. [23], 
the model results from Bannister-Tyrrell et al. [24] suggest a 
negative correlation in the predicted number of COVID-19 cases 
with temperature. Sajadi et al. [25] and Chen et al. [26] argued 
that including weather information it may be possible to improve 
models of community spread of COVID-19 in the future, allowing 
for concentration of public health efforts. However, numerical 
models used for weather forecasts are associated with high 
uncertainties and large errors [27-29] that must be carefully 
investigated.

Based on the vast variety of end uses to weather forecasts, 
we dedicate this work to evaluate the weather prediction data of 
selected environmental variables that most affect human lives. 
Our goal is to provide a valuable assessment of short- and mid-
term weather forecasts using a large number of quality-controlled 
meteorological stations.

Data and Methods

The environmental analysis is related to deterministic short- 
to mid-term forecasts, where the numerical weather prediction 
model (WP) is run every day with high resolution grid, fast 
assimilation of measurements, and with forecast range up to 
16 days. The predictability of weather conditions is limited to a 
few days due to the chaotic behavior of the atmosphere. Lorenz 
(1963) [30] describe that skillful short-term weather forecasts 
have a fundamental limit of about two weeks.

The choice of relevant variables to be analyzed was based 
on previous studies of Wang et al. [23], Bukhari and Jameel [31], 
Sajadi et al. [25], Ishmatov [32], Royé et al. [1,2], Brini et al. [33], 
Sloan et al. [34], Wichmann [6], Zhang et al. [15], Lowen and John 
[35], Jaakkola et al. [12], Xiao et al. (2013) [14], Alessandrini et al. 
[5], Chan et al. [21], Żuk et al. [36], Lowen et al. [13], Konno et al. 
[18], & Moe and Shirley [16] – from where it has been selected air 
temperature at 2 meters height (T2M) and relative humidity (RH) 
as two important factors that affect human health in general.

The forecast data selected comes from the NCEP Global 
Forecast System (GFS) described by EMC (2003) - the best 
publicly-available global forecast, widely used worldwide. It is run 
every day, four times a day (cycles), out to 384 hours (16 days) 
with spatial resolution of 12 km and time resolution of 3 hours. 
Every cycle count with a robust data assimilation system that 
incorporates quality-controlled measurements to systematically 
improve the model initialization (“first-guess”) and consequently 
the whole forecast product. Yin et al. [37] and EMC (2003) 
provide more information about GFS. Yang et al. [27] evaluated 
the performance of GFS against observations made by the U.S. 
Department of Energy Atmospheric Radiation Measurement 
(ARM), focused on the surface energy fluxes and clouds. They 
obtained a good performance from GFS forecast that was able to 

capture the observed evolutions of cloud systems during major 
synoptic events. However, no inland recent assessment of T2M 
and RH has been available so far.

A new version of GFS (FV3, www.weather.gov/news/fv3) with 
improved physics and numerical scheme was put into operation 
in 06/2019 so the present assessment is based on GFS forecasts 
stored from 07/2019 to 03/2020 – approximately 8 months 
of data. The in-situ measurements selected for the GFS forecast 
assessment consist of surface observation data including inland 
meteorological stations, received via Global Telecommunications 
System (GTS), quality controlled and organized by the University 
Corporation for Atmospheric Research (UCAR). This research 
data archive (RDA/UCAR) is described by NCEP/NWS/NOAA [38]. 
The forecast and measurement data can be accessed at the links 
provided at the end of this paper.

The RDA/UCAR global database starts in 1999; however, the 
measurements for the forecast model assessments were obtained 
from 07/2019 until 03/2020 to be consistent with the new version 
of GFS forecast data, previously described. Thousands of stations 
are provided by RDA/UCAR all over the globe but the selection 
of proper data for comparison with GFS must be done with 
caution. The T2M and RH characteristics on the continent rapidly 
change in space whereas the grid resolution of GFS is 12km. 
For a reliable comparison of GFS with RDA/UCAR, interpolation 
should be avoided as well as stations distant from the model grid 
points. Hence, a sub-set of RDA/UCAR stations were selected with 
maximum distance to GFS grid points of 500 meters. Stations with 
many gaps and outliers were excluded. It leads to a total of 225 
stations with latitude/longitude close to the nearest grid point of 
GFS, where the matchups could be directly built. Considering the 
period of 8 months over these stations, and the forecast range of 
16 days (additional time dimension), the methodology resulted in 
5.397.315 pairs of forecast/measurement utilized for the analyses 
and assessments.

The statistical assessment was conceived to investigate 
accuracy and precision separately, being the accuracy related to 
the average deviation of the model predictions to the expected 
values, and precision related to the spread of such deviation – 
interpreted as systematic and scatter errors, respectively. Three 
error metrics were calculated, suggested by Campos et al. [39], 
to summarize the assessment (equations 1 to 3) where  is the 
GFS forecast,  is the measured data, and the overbar indicates 
the arithmetic mean. The Bias (equation 1) is associated with 
systematic errors, where positive values indicate that GFS 
overestimates the measurements and negative values that the 
measurement is greater than the forecast. The Scatter Index (SI) 
of equation (2) evaluates the scatter component of the error and it 
is always positive. The denominator of equation (2) indicates that 
the SI is normalized by the measurements and can be interpreted 
as ratios, or percentage errors when multiplied by 100. The 
Root Mean Square Error (RMSE) of equation (3) combines the 
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systematic and scatter components of the error, being always 
positive. Additional guidance about forecast verification can be 
found at Jolliff et al. [40] and Ebert et al. [41].
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Results
Table 1: Assessment results of GFS forecast model for the 8-month 
period from 07/2019 to 03/2020 and 225 stations. Positive Bias indicate 
GFS > measurements (model overestimation) while negative values 
indicate GFS < measurements (model underestimation). Temperature 
(T2M) and relative humidity (RH) units are °C and %, respectively, ap-
plicable for Bias and RMSE. The SI is unitless and can be interpreted 
as a percentage scatter error.

 Bias RMSE SI

Temperature -0.79 4.28 0.36

Rel. Humidity -1.45 16.32 0.2

Equations (1) to (3) have been applied to the 5.397.315 
matchups of GFS model forecasts with in-situ measurements 
covering 225 meteorological stations. From Table 1, the 
assessment shows underestimation of GFS compared to the 
stations, for both T2M and RH, i.e., the GFS forecast values are 
usually lower than the measurements, on average. This difference, 

associated with the systematic error, is very small, being less than 
1°C in temperature. Moving to SI, the errors become much larger, 
where T2M presents 36% of scatter error and RH 20%. Looking at 
the Bias and SI together, we can conclude that GFS forecast model 
has a reasonably good accuracy but low precision. The overall 
forecast error, combined into the RMSE, shows T2M with 4.3°C 
and RH with 16.32%. 

The bulk error metrics presented by Table 1 selected the 
whole evaluation dataset, including different forecast lead times. 
It is intuitive that weather prediction tends to perform better 
at shorter ranges, e.g., for the same day or next 24 hours, than 
at longer leads around one week or more. Campos et al. [29,39] 
calculated the deterioration of weather predictions as a function 
of forecast time, which is intrinsic to the atmosphere chaotic 
nature described by Lorenz [30]. In light of this nature and to 
promote a more valuable assessment, the metrics are then re-
calculated for each forecast lead independently (Figure 1 & 
2). The boxplots of Figure 1 summarize several aspects of the 
evolution of the error with the forecast range. The center marks 
of the boxes evolve through negative values, for RH and especially 
T2M, which indicate an increasing underestimation of GFS with 
longer forecast leads. These increasing systematic errors are 
small, with bias of T2M going to -2°C for the longest ranges. The 
boxplots also show the broadness of the error distribution, which 
indicates a large and increasing spread throughout the days. In 
the nowcast (beginning of the forecast) and in the first days, the 
spread is much smaller than the same error beyond one week. 
The rate of increasing of the scatter error is larger for T2M than 
RH. Nevertheless, the growth of scatter errors is common for both 
variables and it is quite significant.

Figure 1: Assessment results of GFS forecast model for the 8-month period from 07/2019 to 03/2020 and 225 stations, as a function of 
forecast time, from nowcast up to 16 days. The boxplots illustrate the systematic error evolution as well as the error distribution at each 
forecast time. The colored boxes show the interquartile range, from the 25th to the 75th percentile, with the center mark related to the 
median. The larger the box, the greater the spread and the broader the distribution is. The whiskers show the minimum and maximum 
values, i.e., the highest and lowest non-outlier observation.
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The evolution of the SI with time is better illustrated in Figure 
2. For T2M it starts with 0.23 and remains below 0.30 in the first 
six days. Beyond day-7, it rapidly increases to very large errors 
reaching 0.5 (same as scatter errors for T2M of 50% of the values) 
on day-15 and 16. For RH, the SI on the nowcast starts with 0.16 
and follows a similar growing pattern until it reaches 0.23 (23% of 
scatter errors) after 13 days, when it stabilizes. The combination 
of scatter and systematic errors in the RMSE plots show smaller 

T2M errors below 3°C within the first four days, and larger errors 
above 5°C beyond ten days of forecast. The same RMSE for RH 
starts with 13% in the first day and it goes to 18% and above 
after ten days. The joint analysis of Figure 1 & 2 suggests a much 
better forecast skill in the first five days of forecasts that rapidly 
deteriorates with time, especially T2M. It also indicates that the 
greatest challenge in weather forecasting is to reduce scatter 
error at longer lead times.

Figure 2: Assessment results of GFS forecast model for the 8-month period from 07/2019 to 03/2020 and 225 stations, as a function of 
forecast time, from nowcast up to 16 days. The scatter errors are plotted in the left column while the total RMSEs are plotted in the right 
column, where T2M unit is °C and RH is %.

Conclusion

In this paper we have discussed the quality of weather 
forecast data from NCEP. The forecast model was shown to have 
good accuracy but very large scatter errors that compromises the 
forecast precision. The deterioration of the forecast performance 
for longer forecast ranges is pronounced, as shown in Figure 1 
& 2. Within the first four forecast days, the errors are relatively 
small with RMSE for T2M up to 3°C, whereas beyond 10 days the 
same RMSE is above 5°C. The RMSE for RH varies from 13% in the 
first forecast day to near 20% beyond 12 days. We can conclude 
that the performance of NCEP/GFS is mostly affected after the 
fifth day of forecast, and both T2M and RH from NCEP/GFS tend 
to be underestimated, i.e., the forecast usually provides lower 
temperature and humidity than the measurements. For the range 
of best forecast performance, within the first four days, the NCEP/
GFS errors of T2M varies from 2°C to 3°C and RH from 13% to 
14%. Based on these results, end users should utilize weather 
forecast data with caution, considering the increasing errors with 

forecast time, and paying especial attention to large uncertainties 
beyond one week.
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Summary of Data Sources

NCEP’s Global Forecast System (GFS):

https://www.ftp.ncep.noaa.gov/data/nccf/com/gfs/prod/

Inland measurements from RDA/UCAR:

https://rda.ucar.edu/datasets/ds461.0/.
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