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Abstract 

This paper adapts the deep learning pipeline algorithm based on the Multi-Layer Perceptron (MLP) Neural Network to automatically classify the 
forest Light Detection And Ranging (LiDAR) point cloud. To achieve this, the Machine Learning (ML) algorithm parameters such as input layer 
elements, number of hidden layers, activation functions, and alpha value are optimized to achieve the best possible performance. Regarding 
the important role of the geometric features in the input layer, most of the suggested features in the literature are analyzed to employ the more 
effective ones in the algorithm input layer. As a result, seven geometric features, in addition to the 3D coordinates of the point cloud, are chosen 
to represent the first algorithm layer. The proposed algorithm classifies the forest LiDAR point cloud into two classes: vegetation and terrain. The 
proposed approach was tested using two points of clouds, one of a flat area and the other of a mountain area. The results of using the suggested 
approach provide an accuracy score greater than 98%. The obtained result confirms the high efficiency of the proposed classification algorithm 
regarding the envisaged approaches in the literature. Finally, the next step is to generalize this approach to classify more complicated scenes as 
urban areas.
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Introduction

Due to the data acquisition speed as well as the high data 
accuracy, Light Detection And Ranging (LiDAR) is becoming 
increasingly one of the major data sources of 3D spatial data [1]. 
In forest areas, according to Shan & Toth [2], the penetration of 
laser pulses through the canopy and measuring points under trees 
give additional importance to LiDAR data, especially for forest 
resource management, benefiting from advances in deep learning 
algorithms. In the last few years, the use of LiDAR technology in 
forest areas has grown, and it attracts researchers and companies 
to invest in it, especially after the climate changes that affect our 
environments. In which, forests play a critical role in its continuity 
and stability. LiDAR has been used for various applications in the 
forest, such as vegetation extraction, classification, and modeling. 

In this context, Yang et al. [3] used LiDAR data for modeling the 
forest AboveGround Biomass (AGB). Their suggested approach 
is based on allometric relationships and the power-law form to 
integrate structural and spectral information by combining LiDAR  

 
canopy height attributes and optical spectral indexes. Loh et al. 
[4] investigated how multi-temporal airborne LiDAR data can 
be used to estimate the AGB changes in the tropical montane 
forest of Borneo. Jiang et al. [5] utilized spaceborne LiDAR to 
propose an optimized Extreme Learning Machine (ELM) method 
for estimating the AGB of natural forests on the eastern Qinghai-
Xizang Plateau in China. In addition, Chen et al. [6] compared 
different stratification approaches, modeling algorithms, and 
categorical boosting to determine the best stratification approach 
and modeling algorithm for estimating forest Above Ground 
Carbon density (AGC) using airborne LiDAR data. While Fekry 
et al. [7] developed a general framework for integrating ground-
based and drone mounted LiDAR data to improve tree parameter 
estimation using Quantitative Structure Modeling (QSM). Xiong et 
al. [8] measure the long-term structural changes in South Florida 
mangrove forests caused by Hurricane Irma in September 2017 
using airborne LiDAR data.
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Though ground and off the terrain is well-established research 
with documented success and a long list of developed algorithms 
and pipelines (see Section 2), both rule-based [9-13] and ML 
classification algorithms [14] still have limitations and need more 
improvement. That is why a long list of papers was published 
about the same topic during the last three years [15]. Indeed, the 
question of classification parameter selection manifests in rule-
based approaches [16], whereas the classification accuracy in the 
ML classification algorithm still needs improvement (see Table 4 
in Section 7). These motivations were behind deciding to achieve 
this research.

This paper proposes a new automatic classification approach 
for LiDAR point clouds in forest areas. The proposed algorithm 
aims to classify a forest LiDAR point cloud into two mains classes: 
vegetation and terrain. The suggested approach belongs to the 
ML approach family because it uses a pipeline of MultiLayers 
Perceptron (MLP) classifier directly on LiDAR data in addition 
to the point features, maximizing the model’s prediction 
performance. At this stage, it is important to highlight the novelties 
as well as the importance of the suggested approach as follows:

a)	 Novel Deep Learning (DL) approach achieving the LiDAR 
point cloud classification with high accuracy.

b)	 Adaptation of given ML algorithm to minimize the 
classification errors.

c)	 Analysis of the point feature histograms to select the 
effective features that will be used with the point cloud as the 
input layer.

d)	 The high obtained classification accuracy is confirmed 
through the application of the suggested approach on different 
quality and topography datasets.

Before exposing the suggested approach and the achieved 
experiments, it is important to summarize the related works in 
the literature in the next section.

Related Works

In forest areas, LiDAR data may be classified into two main 
classes: vegetation and non-vegetation. The non-vegetation 
class represents several classes such as terrain, buildings, and 
powerlines. Regarding the minimal percentage of the non-terrain 
points among the non-vegetation class, it is acceptable to neglect 
them and focus only on the terrain and vegetation classes [3]. 
Nevertheless, there are two main classification approach families 
in literature: rule-based and ML approaches [16].

In the rule-based approach family, several approaches have 
been developed and improved to classify the trees, and their 
features. Blomley et al. [17] examined existing methods in terms 
of the geometrical scale of feature extraction (whole tree, within 
crown partitions, or within laser footprint). They deduced that 
features were obtained separately from the various scales. They 
aimed to use the within-tree-crown distribution of within-

footprint signal characteristics as extra features to classify tree 
species using LiDAR attributes. Further, Budei et al. [18] compared 
the accuracy of MultiSpectral LiDAR (MSL) for identifying single 
tree species to standard discrete single wavelength LiDAR. In 
addition, Yang et al. [19] extracted multiple features from an 
integrated system that can simultaneously acquire hyperspectral 
information and LiDAR data from two areas with different tree 
species configurations and growing environments. To detect the 
contributions of different features in the pixel-wise tree species 
classification, they devised various schemes that were based 
on various groups of features and classifiers. Also, Yu et al. [20] 
examined the utility of multispectral Airborne Laser Scanning 
(ALS) data for detecting individual trees and classifying tree 
species using Multispectral Airborne Laser Scanning. To develop 
a single-sensor solution for forest mapping that can provide 
species-specific information needed for forest management and 
planning.

To detect individual trees, Ning et al. [21] proposed a coarse-
to-fine individual tree detection method based on treetop points 
extraction and radius expansion from Mobile Laser Scanning 
(MLS) point cloud data. As well as, Luo et al. [22] used a novel 
top-down approach, for extracting individual trees from urban 
MLS point clouds, that combined embedded pointwise directions 
and detected tree centers. A Multi-level Self-Adaptive individual 
tree detection method (MSA) was developed by Hui et al. [23] 
for the coniferous forests to improve detection accuracy using 
airborne LiDAR, by combining the advantages of raster and point-
based methods. Zhou et al. [24] compared a new trunk-based tree 
detection and localization approach to two approaches: DBSCAN-
based (density-based spatial clustering of applications with noise) 
and height density-based approaches These approaches were 
evaluated using leaf-off LiDAR data from two Unmanned Aerial 
Vehicles (UAVs) and a Geiger mode system with varying point 
densities, geometric accuracies, and environmental complexities.

Recent literature tends to use ML and, more specifically, 
deep learning algorithms to improve the existing methods and 
to develop more accurate approaches. For the classification 
topic, Hell et al. [25] classified tree species and standing dead 
trees using two deep neural networks (DNNs): PointCNN 
(Point Convolutional Neural Networks) and 3DmFVNet. They 
investigated the two DNNs PointCNN and 3DmFV-Net for their use 
in tree species classification using airborne LiDAR data. Mizoguchi 
et al. [26] suggested a new method for tree species classification 
using depth images created from LiDAR point clouds of trunks 
using Convolutional Neural Networks (CNN). Marrs et al. [27] 
analyzed ML techniques for tree species identification, namely: 
neural networks, k-nearest neighbors, and Random Forest (RF). 
They used co-registered LiDAR and hyperspectral data to obtain 
high classification accuracies when differentiating between tree 
species. To classify tree species in 3D point clouds collected from 
complex forest scenes using LiDAR data, Zou et al. [28] presented 
a new voxel-based deep learning method to extract the individual 
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tree based on the density of the point clouds, then represents low-
level features using voxel-based rasterization. In addition, Nguyen 
et al. [29] used a Weighted Support Vector Machine (WSVM) 
classifier for tree species classification based on LiDAR data. They 
considered different weights for distinct classes of tree species to 
reduce the impact of the class imbalance distribution and different 
weights for different training samples based on their importance 
for the evaluated classification problem.

Regarding the methods used for tree detection, Tarsha Kurdi 
et al. [30] summarized the main approaches based on the ML 
Random Forest algorithm for tree detection. Schmohl et al. [31] 
used a 3D neural network for individual tree detection from 3D 
ALS point clouds. Windrim et al. [32] also used deep learning 
models to isolate individual trees, determine tree stem points, 
and build a segmented model of the main tree stem that includes 
tree height, diameter, taper, and sweep from airborne laser 
scanning (ALS) of forests. Corte et al. [33] utilized high-density 
GatorEye UAV-based LiDAR point clouds to test four different ML 
approaches, namely Support Vector Regression, Random Forest, 
Artificial Neural Networks, and Extreme Gradient Boosting,. 
They investigated these ML approaches for indirect estimation of 
individual tree dendrometry metrics such as diameter at breast 
height, total height, and timber volume. Chen et al. [34] evaluated 
a deep learning framework to segment individual tree crowns 
from UAV-based LiDAR data by processing directly forest point 
clouds from four forest types: nursery base, monastery garden, 
mixed forest, and defoliated forest. Luo et al. [35] proposed a 
deep learning network for detecting individual trees in complex 
forests using UAV-based laser scanning point clouds that consists 
of ground filtering and tree extraction and it’s based on a multi-
channel information interpretation.

The development of ML algorithms follows an expanding 
rate, and it improves frequently and rapidly. Recently, the use 
of automated ML (autoML) has been tackled and started to be 
applied to improve the accuracy of the suggested approaches in 
the literature. In this context, Olson & Moore [36] presented an 
open-source genetic programming-based AutoML system Tree-
based Pipeline Optimization Tool (TPOT) v0.3, that reduces a 
series of feature preprocessors and ML models to maximize 
classification accuracy on a supervised classification task. Also, 
Zoller & Huber [37] implemented a mixture of a short survey 
on AutoML and an examination of frameworks for AutoML and 
hyperparameter optimization (HPO) on real data, they summarize 
and evaluate critical AutoML techniques and methods for each 
step in the creation of an ML pipeline. Feurer et al. [38] created 
a new AutoML system based on the scikit-learn that improves on 
existing AutoML methods by automatically considering the past 
performance on similar datasets. Olson et al. [39] demonstrated 
the efficiency of an open source TPOT in Python on a series of 
simulated and real-world benchmark data sets. They concluded 

that TPOT can create ML pipelines that outperform a basic ML 
analysis while requiring little to no user input or prior knowledge. 
Milutinovic et al. [40] provided a reference implementation as 
well as a universal framework for expressing end-to-end pipelines 
of differentiable, potentially probabilistic ML primitives. Nikitin 
et al. [41] suggested an approach that automates the creation 
of composite ML pipelines that were based on computational 
workflows composed of models and data operations. The method 
incorporated key concepts from both automated ML and workflow 
management systems. Furthermore, Xin et al. [42] examined 
the characteristics, components, and topologies of typical 
industrial-strength ML pipelines at various granularities. They 
introduced model graphlets, which are specialized data models 
for representing and reasoning about repeatedly run components 
in these ML pipelines. and recognize multiple rich opportunities 
for optimization based on traditional data management concepts.

Finally, it is important to highlight other applications of LiDAR 
data in forest areas. In this context, a novel proposed approach is 
presented by Tao et al. [43] for detecting fairy circles in intertidal 
salt marshes from UAV-based LiDAR data by considering the 
specular reflections and recovering the scanning geometry. LiDAR 
data was also used for fire risk evaluation by Gonzalez-Olabarria 
et al. [44] at the landscape level using spatially continuous 
information for forest management purposes in the region of 
Soria, they incorporated LiDAR derived information, a forest 
resources inventory, understory and canopy fuel modeling, and 
fire behavior simulation models.

Datasets

Regarding the application of all experiments and analyses 
on the selected datasets, it is crucial to introduce the employed 
datasets before entering the paper crux. four datasets are used 
in this paper. The first and the second datasets are taken from 
Elvis - Elevation, and Depth [45] (see Figure 1 & Table 1). In 
fact, the third point cloud is the extension of the first one. This 
data represents an airborne scan of Toowoomba-Lockyer Valley, 
Queensland, Australia. It was acquired in 2015 using a fixed-wing 
aircraft between the 18th of August and the 14th of December 
2015. The Inertial Measurements Unit (IMU) and post-processed 
airborne Global Navigation Satellite System (GNSS) logs were used 
to generate the LiDAR point cloud from the waveform instrument 
data. The point density is equal to 2 point/m2. The third point 
cloud is of the south mountain area in Queensland, Australia 
(see Figure 2). This point cloud was collected by a UAV platform 
in 2022. For this purpose, a DJI M300 RTK drone carrying the 
TrueView 515 LiDAR flew the payload. The mean flying height 
is 50m, the point density is 250 point/m2 (Table 1). The last 
dataset is of Gisborne, New Zealand 2018-2020, it was captured 
for Gisborne District by aerial surveys and their subcontractors 
between 2018 and 2020. Data management and distribution is by 
Toitu Te Whenua Land Information New Zealand [46]. However, 
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the four datasets represent forested areas. From the topographic 
viewpoint, the first two clouds are of a flat area, whereas the third 
one is of a mountain area. In fact, this selection has been adopted 

to check the efficiency of the suggested approach with several 
zones of different topography natures.

Figure 1: First dataset point cloud of the flat area (Table 1).

Figure 2: Third point cloud of the mountain area (Table 1).

Suggested Approach

This paper exposes a novel automatic classification approach 
for forest LiDAR datasets. The suggested approach classifies a 
forest LiDAR point cloud into two classes: vegetation and terrain. 

The input of the suggested approach is the LiDAR point cloud in 
addition to the calculated point features. According to west et al. 
[47], a list of geometric features can be calculated for each LiDAR 
point and its neighborhood. In this section, the components of the 

http://dx.doi.org/10.19080/IJESNR.2023.32.556340


How to cite this article: Amakhchan W, Tarsha Kurdi F, Gharineiat Z, Boulaassal H, El Kharki O. Classification of Forest LiDAR Data Using Deep Learning 
Pipeline Algorithm and Geometric Feature Analysis. Int J Environ Sci Nat Res. 2023; 32(3): 556340. DOI: 10.19080/IJESNR.2023.32.5564005

International Journal of Environmental Sciences & Natural Resources

deep learning pipeline network will first be detailed. Thereafter, 
the geometric features of LIDAR points will be tested and analyzed 

to select the more effective feature that will be used with the 
LiDAR point cloud as the input layer in the proposed network.

Table 1: Characteristics of the input datasets.

  Area (ha) Number of LAS 
Points

Flight 
Height (m)

Density 
(point/m2) Point Accuracy (cm)

Lockyer Valley North 2015 (Flat area)-1 36 724 231 1600 2 30-80

Lockyer Valley North 2015-2 215 4343313 1600 2 30-80

Southeast of Queensland 2022 (Mountain area) 27 67 952 598 50 250 5-10

Gisborne, New Zealand 2018-2020 1498 237 622 088 -- 10.07 ---

Due to the large number of points in the mountain dataset, 
the point cloud was subsampled using the spatial method, where 
setting a minimum distance between two points is required, in 
this study 1 m was chosen. This means that the density of the new 
dataset is 1 point/m2. The algorithm will be trained and tested 
with the subsampled dataset.

The next step is the labeling phase of the datasets, which 
involves selecting the items to be extracted. Since the purpose of 
this article is to extract vegetation, Cloudcompare software was 
used to visualize the points and manually separate the vegetation 
class from the other classes. When the separation process is 
complete, each class was assigned a number, “1” for the vegetation 
points and “0” for the others, which will be called in the rest of 
the paper terrain points. The labeled classes of each area were 
combined to obtain the final datasets that will train the algorithm.

Principle of MLP

Concerning the proposed network, MLP network will be used 
which is a supervised learning technique that belongs to the Feed-
Forward neural network family. It transfers information from an 
input dataset to a separate set of outputs in one direction [48]. An 
MLP is made up of nodes and layers that begin with the input layer 
and progress via one or more hidden levels to the output layer. 
Each node is connected to the next one by a weight and bias value 
(threshold), and each node is fully connected to the next layer. If 
the output of any node exceeds a certain threshold, that node is 
activated and the data is sent to the next layer of the network; 
otherwise, the data is not transferred. A neuron (node) in a neural 
network is a mathematical function that gathers and categorizes 
data based on a predefined schema. The network closely resembles 
statistical methods like curve fitting and regression analysis. 
The input weights are similar to the coefficients in a regression 
equation. However more complex initialization schemes can 
be used, they are frequently initialized to small random values. 
The weighted inputs are added and passed through an activation 
function known as a transfer function. An activation function 
is a straightforward mapping of summed weighted input to 
neuron output. It is referred to as an activation function because 
it controls the activation threshold of the neuron as well as the 
strength of the output signal. Non-linear activation functions have 
mostly been used. This permits the network to combine inputs in 

more complex ways, providing a richer capability in the functions 
it can model. Non-linear functions such as the logistic, also known 
as the sigmoid function (Equation 1 [49]), which produces a value 
between 0 and 1 with an s-shaped distribution, and the hyperbolic 
tangent function tanh (Equation 2 [49]), which produces the same 
distribution over the range -1 to +1.

There are several activation functions (.) : R RΦ → , the 
mostly used ones are:

a)	 Sigmoid function: 1( )         (1)
1 xx

e−Φ =
+

b)	 Hyperbolic tangent sigmoid (tanh) transfer function: 

( )( )
2( )         (2)

1 1x
x

e−
Φ =

+ −

Different activation functions can be used in the same model.

The type of problem modeled strongly influences the 
activation function used in the output layer, e.g., A regression 
problem may have a single output neuron with no activation 
function. A single output neuron in a binary classification problem 
may use a sigmoid activation function to output a value between 
0 and 1 to represent the probability of predicting a value for 
class 1. This can be converted into a crisp class value by using a 
threshold of 0.5 and snapping values less than the threshold to 0 
and values greater than the threshold to 1. In the output layer of a 
multi-class classification problem, there may be multiple neurons, 
one for each class, e.g., three neurons for the three classes in the 
famous iris flowers classification problem. In this case, a softmax 
activation function can be used to determine the probability of the 
network correctly predicting each of the class values. A crisp class 
classification value can be obtained by selecting the output with 
the highest probability.

Hidden layers are those that follow the input layer and are not 
directly exposed to the input. The most basic network structure 
is a single neuron in the hidden layer that outputs the value 
directly. Hidden layers adjust the input weightings until the neural 
network’s margin of error is as small as possible. The final hidden 
layer is known as the output layer, and it oversees producing a 
value or vector of values that directly relate to the problem’s 
format.
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Figure 3: First and second point cloud of Lockyer Valley north 2015 (Table 1).

Figure 4: Gisborne, New Zealand 2018-2020 point cloud (Table 1).

How does MLP work

By training the data set, MLP learns a function (.) : m oS R R→
, where m is the number of dimensions for input and o is the 
number of dimensions for output [50,51]. Between the input 
and output layers, one or more nonlinear hidden layers may 
exist. M neurons are found in the hidden layers. For each passage 
the weighted sum is calculated by a linear combination of input 

features [ ]1 2 3, , ....., nX x x x x=  and their weights [ ]1 2, ,...., nW w w w=  
plus a bias term b [52].

The weighted sum of the inputs and the bias were calculated 
using Equation 3.

1
        (3)

m

ik ik
k

S b x W
=

= +∑
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The activation function determines the behavior of the node 
[53]:

1

1  0
( ) ( )         (4)

0  0

m

ik ik
k

if S
U S b x w

if S=

≥
= Φ = Φ + =  <

∑
Figure 5 shows an example of a neural network with two 

hidden layers, as well as the functions and parameters used in 
each step of the process starting from inputs to outputs.

Deep learning pipeline

A Deep Learning (DL) pipeline 1 2:h D D→  is a sequential 
combination of various algorithms that transforms a feature vector 
from the input dataset 1x D∈  into a target value 2y D∈  of the output 
dataset, a class label for a classification problem. The triplet (g, A, 
λ) defines a DL pipeline , ,g A λΡ  with g ∈ G a valid pipeline structure, 

{ }' (1) (2) ( ), ,...., nA A A A A∈ = a vector consisting of the selected algorithm for 
each node and λ a vector comprising the hyperparameters of all 
selected algorithms.

By joining the probability distribution 1 2( , )P D D  of the feature 
space 1D  and target space 2D  known as a generative model, the 
pipeline trained on the generative model P noted as 

, , ,g A PλΡ  [37].

The performance of the pipeline 
( ), ,g Ah λ

 given by a loss function 
( ).,.ς  and a generative model 

1 2( , )P D D  and calculated as 

 ( ) ( )( ) ( )( ), , , 1 2 1 2 1 2, ( ), , ( , )       (5)g A pR P P h D D h D D dP D Dλ ς= Ε = ∫
With 1( )h D  is the predicted output of 

, , ,g A PλΡ .

Creating a DL pipeline for a specific ML assignment may 
be divided into three parts: first, establish the structure of the 
pipeline, such as how many preprocessing and feature engineering 
processes are required, how the data flows through the pipeline, 
and how many models must be trained. Then, for each stage, an 
algorithm must be chosen in the presented case MLPClassifier 
algorithm was chosen. Finally, the relevant hyperparameters for 
each algorithm must be chosen. To evaluate pipeline performance, 
all stages must be performed [37].

The Pipeline object can combine several transformers and an 
estimator to create a combined estimator to, e.g., apply dimension 
reduction before fitting [54]. The Pipeline is often used in 
combination with FeatureUnion that concatenates the output of 
transformers into a composite feature space. In contrast, Pipelines 
only transform the observed data [39]. 

Pipeline serves multiple purposes:

a)	 Convenience and encapsulation: only one call to fit and 

predict the data is required to fit a whole sequence of estimators.

b)	 Joint parameter selection: the ability to perform a grid 
search over the parameters of all estimators in the pipeline at the 
same time.

c)	 Safety: By ensuring that the same samples are used to 
train the transformers and predictors, pipelines help to avoid 
statistics from the test data leaking into the trained model in 
cross-validation.

Suggested workflow

Figure 6 illustrates the general workflow of using the MLP 
pipeline algorithm. The process starts with splitting the data in 
order to test the MLP pipeline algorithm that was created, trained, 
and validated. Finally, use it to make predictions.

Once the labeling phase of the preparation of the data ends 
using CloudCompare software mentioned in section 3.1, the 
second phase of the workflow can be summarized in Figure 7 as 
follows: 

a)	 Split the labeled dataset into 70% for the Train set, 10% 
for the validation set, and 20% for the test sets (A).

b)	 Develop the algorithm of the MLP pipeline using python, 
NumPy, and Sklearn libraries (B). 

c)	 Train the model with different parameters using 
the train set (C). To get the best parameters a function called 
GridSearchCV() was used from the Sklearn library [54] that can be 
used to determine optimal values for a model’s hyperparameters. 
Choosing the best hyperparameters has a big impact on the 
performance of the approach. 

d)	 Test the trained and the validated model using the test 
set to confirm the efficacity of its performance (E).

The output of this model is a predicted label for each point 
(1 for vegetation and 0 for terrain). The final outcome was 
represented in the results section (Figures 28-31).

This workflow starts by splitting the dataset into a training 
set and a testing set, using a function called -train_test_split- from 
sklearn library [54].

It takes as parameters the grouped features of the point 
clouds, the labels (1 or 0), the size of the test set for in this case 0.2 
(e.g., 20%) of the original data, and the last parameter is random 
state which controls the shuffling process. This function returns 
four variables; the first contains the training set, the second 
contains the labels of the training set, the third is the test set, and 
the last one is the labels of the test. It separates the labels of each 
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set (training and testing) in a separate variable, so that the labels 
of the test set will be considered as a reference model to compare 
it with the obtained labels by the proposed approach in order to 
get the accuracy of the approach.

Next, the pipeline was created using the neural network 
MLPClassifier algorithms from scikit-learn library [54] and the 
StandardScaler function that removes the mean and scales each 
feature/variable to unit variance. The parameters of the pipeline 
used [54] are: steps which is a list of Estimator objects, memory 
is string or object, the default value is none used to cache the 
fitted transformers of the pipeline, verbose is a Boolean its default 
value is false, if its value is true, the elapsed time while fitting each 
step will be printed as it is accomplished. Then, the MLP pipeline 
algorithm is trained and validated, after varying and optimizing 
different hyperparameters of the algorithm mentioned in Section 
4.2 as the input layer elements, the number of Hidden Layers 
(HL), the activation functions, and the alpha value used. The 
process behind this step is represented in Figure 7. Finally, test 
the algorithm and analyze the score obtained if it will allow using 
the MLP pipeline algorithm to get predictions. 

The accuracy score was calculated to evaluate the performance 
of the approach, using the function described in Equation 6 [54]. 

( ) ( )1   1, 1     (6)
   0

mNumber of correct predictionsAccuracy y y y yl i l iTotal number of predicitons m i

−
= = =∑

=

 

 

Where yl
 is the predicted value of the i-th sample and iy  is the 

corresponding true value, m is the number of input dimensions. 

The best accuracy results were obtained with 10 HL, 
alpha=0.0001, solver=” adam”, activation=” tanh”. Finally, after the 
MLP pipeline was trained and validated, it was tested with a test 
set to estimate the accuracy.

The difference between using an MLP algorithm and an MPL 
pipeline algorithm is that a machine learning pipeline is a series 
of steps used to create, deploy, and monitor a machine learning 
model. The method is used to map a machine learning model’s 

entire development, training, deployment, and monitoring. It is 
frequently employed to automate the classification process.

The process of defining each step as a unique module of 
the overall process is an important aspect of building machine 
learning pipelines. This modular approach assists organizations 
in viewing machine learning models holistically, assisting in 
the organization and management of the end-to-end process. 
However, it also provides a solid foundation for model scaling, as 
individual modules within the machine learning pipeline can be 
upscaled or downscaled.

Feature Calculation

A mean plane as well as a normal vector can be fitted through 
one point and its neighborhood using the least square theory [15]. 

To determine the neighborhood of each LiDAR point, the 
neighborhood matrix ( )mN  is defined. This matrix consists of 
n rows (n is the number of points in the point cloud list) where 
row number i contains the neighboring point numbers of point 
number I [16]. After calculating mN , the considered features, 
along with the normal vectors of the point cloud, can be calculated 
using the eigenvectors of the covariance matrix. The features of 
the point cloud are calculated based on different combinations of 
eigenvalues 1 2 3, ,λ λ λ  and eigenvectors of Cov[P, P] of a point P 
[55] (Equation 7).

 ( ) 1= ( )( )      (7)
| |

T
p A

Cov A p p p p
A ∈

− −∑
Where p is a given point and p  is the centroid of the 

neighborhood A. 

Assuming that iλ  is the eigenvalues { }1,2,3i∈ , the main geometric 
features based on the eigenvalues and eigenvector are: the sum 
of eigenvalues, omnivariance, eigenentropy, anisotropy, planarity, 
linearity, PCA1, PCA2, surface variation, Sphericity, verticality, 
anisotropy, linearity, PCA1 and, PCA2 [55] (see Table 2). The 
equations of these features are mentioned in Table 2.

Table 2: Definition of geometric features.

Feature Definition Equation Number

Sum of eigenvalues
  1 2 3iλ λ λ λ= + +∑ 8

Ominvariance
  3

1 2 3O λ λ λ= × ×
9
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Eigenentropy
  ( )lni iE λ λ= −∑ 10

Planarity

  2 3

1

λ λ
λ
−

Ρ =
11

Sphericity

  3

1

S λ
λ

=
12

Surface variation

  3

1 2 3

Sv λ
λ λ λ

=
+ +

13

Verticality
  1 | |zV n= − 14

Anisotrop

  1 3

1

A λ λ
λ
−

=
15

Linearity

  1 2

1

L λ λ
λ
−

=
16
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PCA1

  1

1 2 3

1PCA λ
λ λ λ

=
+ +

17

PCA2

  2

1 2 3

2PCA λ
λ λ λ

=
+ +

18

The verticality is derived from the vertical component zn of 
the normal vector 3n∈  [56]. iλ  are eigenvalues.

Geometric Feature Analysis

After being presented in the last section, the equations of the 
main features employed in the literature, which can be calculated 
from one point and its neighborhood [57], and the more effective 
features that highlight the difference between the terrain and 
the vegetation can be selected. For this purpose, two datasets of 
different topography areas are used. The first dataset is of a flat 
area which was measured by plane (first dataset in Table 1), and 
the second dataset is of a mountain area which was measured by 
Unmanned Aerial Vehicle (UAV) (drone) (third dataset in Table 1). 

To analyze the different geometric features, the two employed 
datasets are classified manually (point per point) into two classes: 
terrain and vegetation. At this stage, it is important to mention 
that Shan & Toth [2] suppose that manual classification is not only 

more accurate than automatic classification, but it can produce 
classes that can be used as references to estimate the accuracy 
of the automatic classification. Thereafter, each geometric feature 
is calculated for the two separated classes for the two used point 
clouds. In order to scrutinize the obtained feature values, a 
histogram graph is calculated for the list of feature values of each 
class in the given point clouds. The tested feature list is the sum 
of eigenvalues, ominvariance, eigenentropy, planarity, sphericity, 
surface variation, Anisotrop, Linearity, PCA1, PCA2, and verticality.

Figures 8a, 8b, 9a & 9b illustrate the histograms of the values 
obtained from the calculated eigenentropy features. It can be 
noted that the value distributions are strongly distinctive between 
the vegetation and terrain classes. The value difference and 
distribution become more representative in the mountain area, 
where most of the terrain points have negative values in contrast 
to the vegetation points. Therefore, this feature can be useful for 
recognizing the vegetation class from the terrain class. 

Figure 5: Example of neural network with 2 hidden layers.
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Figure 6: DL pipeline general workflow.

Figure 7: The phase of creating, evaluating, and testing the MLP pipeline algorithm (model).

Figures 10a, 10b, 11a & 11b illustrate the histograms of the 
values obtained of the calculated ominvariance features. The 
value distributions are obviously distinct between the vegetation 
and terrain classes. The estimation and distribution become more 
indicative in the mountain area, where the majority of terrain 
points have values between 1 and 2 compared to vegetation 
points that have the majority of values between 0.1 and 0.5. As a 
result, this feature can help distinguish the vegetation class from 
the terrain class.

Figures 12a, 12b, 13a & 13b illustrate the histograms of 
the values obtained from the calculated planarity features. The 
figures in both areas show that every histogram has its slightly 
distinct distribution of points but unfortunately, they have 
similar distribution intervals between 0 and 0.8. This observation 
weakens the importance of this feature for the recognition of 
vegetation from the terrain. In fact, this conclusion is sufficiently 
logical because this feature expresses the presence of planner 
surfaces which is not valid in vegetation and terrain classes.

Figures 14a, 14b, 15a & 15b illustrate the histograms of the 
values obtained from the calculated sphericity features. in the flat 
area, the feature values have different distribution intervals where 
the vegetation interval is [0, 0.4] whereas the terrain interval is 
[0, 0.01]. Despite this distribution in the case of mountain areas 
becoming less significant, the huge histogram form difference 
between vegetation and terrain reinforces the importance of this 
feature to separate terrain from vegetation.

Figures 16a, 16b, 17a & 17b illustrate the histograms of the 
values obtained from the calculated sum of eigenvalues features. 
It characterizes the difference between mountain as well as flat 
areas. Indeed, in the mountain area, the values less than 2 represent 
the vegetation class whereas the values greater than 2 represent 
the terrain class. Moreover, in the flat area, the distribution 
intervals as well as the histogram forms are distinctive between 
the two studied classes. Hence, the sphericity feature can play an 
important role in localizing the terrain and the vegetation points. 

http://dx.doi.org/10.19080/IJESNR.2023.32.556340


How to cite this article: Amakhchan W, Tarsha Kurdi F, Gharineiat Z, Boulaassal H, El Kharki O. Classification of Forest LiDAR Data Using Deep Learning 
Pipeline Algorithm and Geometric Feature Analysis. Int J Environ Sci Nat Res. 2023; 32(3): 556340. DOI: 10.19080/IJESNR.2023.32.55640012

International Journal of Environmental Sciences & Natural Resources

Figure 8: Histograms of eigenentropy feature values in mountain 
area. (a) Vegetation class; (b) Terrain class.

Figure 9: Histograms of eigenentropy feature values in flat 
area. (a)  Vegetation class; (b) Terrain class.

Figure 10: Histograms of ominvariance feature values in 
mountain area. (a) Vegetation class; (b) Terrain class.

Figure 11: Histograms of ominvariance feature values in flat 
area. (a)  Vegetation class; (b) Terrain class.

Figure 12: Histograms of planarity feature values in mountain 
area. (a)  Vegetation class; (b) Terrain class.

Figure 13: Histograms of planarity feature values in flat area. 
(a)  Vegetation class; (b) Terrain class

Figure 14: Histograms of sphericity feature values in mountain 
area. (a)  Vegetation class; (b) Terrain class.

Figure 15: Histograms of sphericity feature values in flat 
area. (a)  Vegetation class; (b) Terrain class.

Figure 16: Histograms of sum of eigenvalues feature values in 
mountain area. (a) Vegetation class; (b) Terrain class

Figure 17: Histograms of sum of eigenvalues feature values 
in flat area. (a) Vegetation class; (b) Terrain class.
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Figure 18: Histograms of surface variation feature values in 
mountain area. (a) Vegetation class; (b) Terrain class.

Figure 19: Histograms of surface variation feature values in 
flat area. (a) Vegetation class; (b) Terrain class.

Figure 20: Histograms of verticality feature values in mountain 
area. (a) Vegetation class; (b) Terrain class

Figure 21: Histograms of verticality feature values in flat 
area. (a) Vegetation class; (b) Terrain class

Figure 22: Histograms of anisotropy feature values in mountain 
area. (a) Vegetation class; (b) Terrain class.

Figure 23: Histograms of anisotropy feature values in flat 
area. (a) Vegetation class; (b) Terrain class.

Figure 24: Histograms of linearity feature values in flat area. (a) 
Vegetation class; (b) Terrain class.

Figure 25: Histograms of linearity feature values in flat area. 
(a) Vegetation class; (b) Terrain class.

Figure 26: Histograms of PCA1 feature values in mountain area. 
(a) Vegetation class; (b) Terrain class.

Figure 27: Histograms of PCA1 feature values in flat area. 
(a) Vegetation class; (b) Terrain class.
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Figure 28: Histograms of PCA2 feature values in mountain area. 
(a) Vegetation class; (b) Terrain class.

Figure 29: Histograms of PCA2 feature values in flat area. 
(a) Vegetation class; (b) Terrain class.

Figures 18a, 18b, 19a & 19b illustrate the histograms of the 
values obtained from the calculated surface variation feature. In 
mountain areas, the histograms show the distribution of points 
in the same interval though a great difference between the 
histogram forms. Unlike in the flat area, most terrain points have 
values equal almost to 0 in contrast to the vegetation class points 
which have values localized between 0 and 0.15. In conclusion, 
the surface variation feature can help enormously to carry out the 
classification of vegetation/terrain.

Figures 20a, 20b, 21a & 21b show histograms of the calculated 
verticality feature values. The histograms of mountain areas show 
that the point distribution has the same interval despite the 
considerable histogram form difference. Whereas in flat areas, 
in addition to the huge histogram form difference, most terrain 
points are located by the 0 value in opposite to vegetation class 
points decline quickly from 0 to 1. However, the great histogram 
distinguished behavior between terrain and vegetation in both 
flat and terrain areas making the verticality feature considered an 
efficient one.

Figures 22a, 22b, 23a & 23b show histograms of the calculated 
anisotropy feature values. In mountain areas, the histograms 
show that the distributions of points are in the same interval 
with different histogram forms, while in flat areas, the main of the 
terrain points have values equal almost to 1 and the vegetation 
class has values between 0.7 and 1. This considerable difference 
between histogram behaviors raises the importance of the 
anisotropy feature. 

The calculated linearity feature values are shown in Figures 
24a, 24b, 25a & 25b. The histograms in both areas show that the 
distribution of points is almost in the same interval. Moreover, 
despite the histogram spike in variant points, the difference 
between them is still insignificant and consequently, the linearity 
feature will not help in the two-goal classes separation. At 
this stage, it is important to note that this conclusion may be 
considered coherent because in the two target classes it is not 
anticipated to meet point gropes having linear relationships.

Figures 26a, 26b, 27a & 27b show the calculated PCA1 feature 
values. Both areas have the same interval of point distribution 
with similar histogram forms. These slight differences between 

the histogram of the PCA1 feature will not be able to help to 
separate the vegetation and terrain classes, which is why this 
geometric feature will not be considered. 

The same last histogram analysis can be carried out on the 
PCA2 feature. Hence, the calculated PCA2 values that are shown 
in Figures 28a, 28b, 29a & 29b, illustrate that the distribution of 
points in both areas will not be benefited to distinguish between 
the two target classes.

To summarize the obtained results illustrated in Figures 8 to 
29, a new factor is defined named Histogram Form Resemblance 
Mark (HFRM). This factor reflects the resemblance level between 
the two histograms. It considers the interval of point distribution 
(the horizontal axis values) as well as the histogram form. 

       (8)HFRM OP R= ×

Where OP is the overlap percentage between the two intervals 
of point distribution, and R is the histogram shape similarity mark. 
The R value can be estimated by the user where a value can be 
estimated between 1 when the two histogram shapes are exactly 
similar, and 0.5 when the two histogram shapes are completely 
different. 

These factor values are between 0 where there is no 
resemblance between two histograms and 1 when the two 
histograms are exactly similar (Table 3). In Table 3, for each 
feature six values are estimated. First, the Vegetation Class in the 
Mountain area (VCM) represents the interval of point distribution 
of the vegetation histogram in the mountain area (the horizontal 
axis values). Second, the Terrain Class in the Mountain area (TCM) 
represents the interval of point distribution of the terrain class 
histogram in the mountain area. Third, the Vegetation Class in a 
flat area (VCF) represents the interval of point distribution of the 
vegetation class histogram in the flat area. Fourth, the Terrain Class 
in the Flat area (TCF) represents the interval of point distribution 
of the terrain class histogram in the flat area. Finally, the HFRM 
factor is calculated two times to compare the case of the mountain 
and flat areas. The basic adopted hypothesis says if the similarity 
level (HFRM) between vegetation and terrain feature histograms 
in the same point cloud is high, hence the employment of this 
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feature in the input layer of the DL algorithm will not be useful 
and vice-versa. To select the features that will be used in the DL 
algorithm, it is sufficient to select features having HFRM values 
smaller than 0.5 in Table 3. Consequently, the benefit features 
for the ML algorithm are the sum of eigenvalues, ominvariance, 

eigenentropy, Anisotropy, sphericity, surface variation, and 
verticality. In the same context, four geometric features are 
rejected because their HFRM values are greater than 5 which are 
Planarity Linearity PCA1 and PCA2. 

Table 3: Summarizing of feature values illustrated in Figures 7 to 28. HFRM is Histogram Form ‎Resemblance Mark; VCM: Vegetation Class in 
Mountain area; TCM: Terrain Class in Mountain ‎area; VCF: Vegetation Class in Flat area; TCF: Terrain Class in Flat area.‎

Feature VCM TCM HFRM VCF TCF HFRM

Sum of eigenvalues 0.75 – 1.5 4 – 7.5 0 0.25 - 1 0.4 – 0.7 0.5

Omnivariance 0.1 – 0.5 1 – 2.1 0.2 0 – 0.26 0 – 0.1 0.4

Eigenentropy 0.5 – 1.1 -7.5 – -2.5 0 0.5 - 1 0.6- 0.75 0.5

Planarity 0.5 – 0.6 0.2 – 0.8 0.8 0 – 0.7 0.2 – 0.9 0.8

Sphericity 0 – 0.4 0 – 0.5 0.5 0 – 0.2 0 – 0.025 0.3

Surface variation 0 – 0.25 0 – 0.25 0.5 0 – 0.1 0 – 0.01 0.2

Verticality 0 - 1 0 - 1 0.5 0 - 1 0 – 0.05 0.2

Anisotropy 0.3-1 0.2-1 0.5 0.6-1 0.995-1 0.2

Linearity 0-1 0-1 0.7 0-1 0-1 0.8

PCA1 0.4-0.92 0.37-0.9 0.8 0.4-1 0.45-1 0.8

PCA2 0.05-0.5 0.1-0.5 0.75 0-0.5 0.1-0.52 0.8

At this stage, it is important to mention that one feature can 
be useful to recognize one object class in the point cloud and may 
be useless to recognize another object class in the point cloud. 
The obtained feature list will be used to obtain the neighborhood 
characteristics, and the shape to understand the data distribution. 
In other words, this result will help the ML algorithm to recognize 

and differentiate the vegetation and the terrain points in both 
mountain and flat areas. The given features used for purely 
geometric classification problem: to learn the suggested ML 
model to classify the points cloud as a binary classification into 
two classes vegetation (label = 1) and terrain (label = 0).

Results and Discussion

Figure 30: Extracted terrain points from flat area point cloud.
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The suggested approach classifies the point cloud into two 
classes: vegetation and terrain, using the adapted MLP classifier 
ML pipeline. The suggested approach was tested using four 
point-clouds, the first two ones is of a flat area (Figure 1 & 3), 
and all points of the third cloud are in mountain area (see Figure 
2 & Table 1). Figures 30 & 31 represent the obtained results 
of applying the suggested classification algorithm on the flat 
area point cloud whereas Figures 32 & 33 illustrate the results 
obtained in the mountain area point cloud. These figures show 
that the vegetation/ terrain classification is carried out accurately 
in both cases. In fact, the developed approach provides an 
accuracy score calculated by Equation 6 equal to 99.03% in the 

flat area, and a score equal to 99.87% in the mountain area. The 
score is calculated by comparing the algorithm’s predicted results 
with manual classification of the point cloud as a reference model. 
Indeed, the point cloud quality (point density and accuracy) of the 
mountain area is much greater than the quality of the flat area 
point cloud. That is why the estimated classification accuracy in 
the mountain cloud was higher. In this context, this accuracy is 
calculated using a manually classified point cloud as a reference 
model [58]. Nevertheless, the classification accuracy in the two 
cases was excellent (greater than 99%), which confirms the high 
efficiency of the suggested approach.

Figure 31: Extracted vegetation points from flat area point cloud.

Figure 32: Extracted vegetation points in mountain area point cloud.
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Figure 33: Extracted terrain points in mountain area point cloud.

Figure 34: Extracted vegetation points of the second point cloud (Table1).

Figure 35: Extracted terrain points of the second point cloud (Table1).
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At this stage, it is unavoidable to note that the aboveground 
parts of one tree are the crown and the trunk. Figures 30-33 show 
that the tree crowns are perfectly recognized. Moreover, the upper 
90% of tree trunks are also perfectly established. Unfortunately, 
the trunk linkage parts between trees and ground are sometimes 
considered as ground (see the zoomed area in Figure 30). Indeed, 
the LiDAR point density and distribution of these trunk parts 
can disturb the classification algorithm and generate this miss-
classification. Moreover, in the data labeling stage before the 
training step, the accuracy of point labeling of the linkage trunk 
parts may be low for the same last reasons. Nevertheless, more 

investigation is required to solve this issue.

 To effectively test the algorithm and make sure of the 
obtained accuracy value, it is applied on larger areas of datasets 
2 and 4 (see Figure 3 & 4 in addition to Table 1). Indeed, the 
topography of the newly tested areas is a mix of mountain and 
flat. The obtained results are illustrated in Figures 34-37 where 
the obtained accuracy score is equal to 98.03 % and 98.12 % 
consecutively. This result on large-scale data and complex ground 
topography confirms and reinforces the efficiency of the suggested 
classification approach.

Figure 36: Extracted vegetation points of Gisborne (Table1).

Figure 37: Extracted terrain points of Gisborne (Table1).
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At this stage, in the context of the efficacity evaluation of 
the suggested approach, it is beneficial to compare the accuracy 
obtained by the suggested algorithm with the accuracies of 
similar suggested classification algorithms in the literature. 
Hence, Vega et al. [59] introduce the rule-based PTrees algorithm 
that represents a multi-scale dynamic point cloud segmentation 
method for extracting forest trees from LiDAR point clouds using 
raw elevation values (Z) and computing height (H = Z ground 
elevation). This approach has been tested in three different forest 
types, detecting 82% of the trees with a false detection rate of 
less than 10%. Kwak et al. [60] present a method for detecting 
individual trees and estimating tree heights in three South Korean 
forests using LiDAR data. To detect treetops from a Digital Canopy 
Model (DCM) using the extended maxima transformation of 
morphological image-analysis methods. To classify individual tree 
species from hyperspectral data with a high spatial and spectral 

resolution, Mäyrä et al. [61] compare the performance of three-
dimensional convolutional neural networks (3D-CNNs) with 
the support vector machine, random forest, gradient boosting 
machine, and artificial neural network. Luo et al. [35] propose a 
deep learning framework for detecting trees in complex forests 
using UAV laser scanning point clouds that is based on a designed 
multi-channel information complementarity representation. The 
proposed method is divided into two parts: ground filtering and 
tree detection. The proposed framework achieves a mean recall of 
89.23% and an F1-score of 87.04%.

Table 4 represents the accuracy comparison between the 
suggested approach and similar other approaches in the literature. 
From Table 4, it can be noted that the accuracy score obtained by 
the suggested classification approach is the highest compared to 
the earliest studies of either rule-based or ML algorithms, which 
confirms the efficacity of the suggested approach.

Table 4: Accuracy comparison of suggested approach with similar other approaches in literature.

Approaches Approach Family Accuracy Score (%)

Vega et al. [59] Rule-based 82

Kwak et al. [60] Rule-based 86.7

Luo et al. [35] Rule-based 89.23

Mäyrä et al. [61] ML (3D-CNNs) 87

Mäyrä et al. [61] ML (Support vector machine) 82.4

Mäyrä et al. [61] ML (neural network) 81.7

Suggested approach ML (Deep learning Pipeline) 98.03

Conclusion

This paper adapted the deep learning pipeline algorithm 
based on the MLP Neural Network to automatically classify the 
forest LiDAR point cloud. For this purpose, the parameters of 
the ML algorithm are adapted to obtain the highest possible 
performance through optimization of the algorithm parameters 
such as input layer elements, number of hidden layers, used 
activation functions, and alpha value. Moreover, and in the same 
context, the geometric features of LiDAR points were analyzed to 
recognize the effective features that will be employed in addition 
to the point coordinates within the classification algorithm input 
layer. In this context, eleven features are tested, and then four of 
them were excluded. To evaluate the efficiency of the suggested 
classification approach, two LiDAR point clouds were tested, one 
of a flat area and the other of a mountain area with different point 
densities and accuracies. The obtained high classification accuracy 
when it was applied on a large scale and complex topography 
areas (almost 98.03 %) confirmed the great effeminacy of the 
suggested algorithm.

In future work, it is unavoidable to test the proposed 
classification network on a large number of LiDAR datasets with 
different topography, vegetation kinds, and LiDAR data quality 

before adopting the final version of the suggested algorithm. 
Also, the issue of lower trunk part labelling and recognition needs 
improvement. Furthermore, more investigations are required 
to extend the suggested algorithm to classify more complicated 
scene point clouds such as urban areas where the point cloud 
may represent a long list of classes such as terrain, vegetation, 
buildings, roads, powerlines, and railways. Finally, the fact of 
obtaining high-quality results using a supervised ML algorithm 
must not distract the concentration from the unsupervised 
machine learning techniques that do not need the data training 
step.
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