

Review Article Volume 34 Issue 3 - December 2024 DOI: 10.19080/IJESNR.2024.34.556390 Int I Environ Sci Nat Res

Copyright © All rights are reserved by Avinash Pratap Singh

Microbial Inoculants: Effective Biofertilizers for Improving Crop Productivity

Salman Khan and Avinash Pratap Singh*

Department of Botany, C.M.P. Degree College, University of Allahabad, India

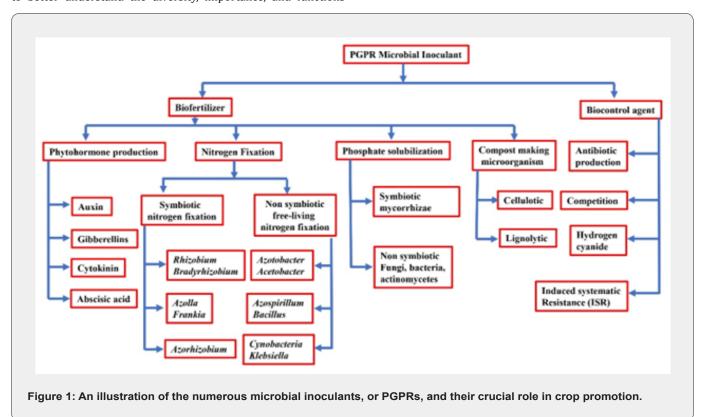
Submission: November 21, 2024; Published: December 04, 2024

*Corresponding author: Avinash Pratap Singh, Microbiology and Plant Pathology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj-211002, India, Email ID: avinashsinghau@gmail.com

Abstract

In 2025, the world's population is expected to reach 10 billion, making food security a global concern. Improving agricultural production in response to changing climatic circumstances is crucial for maintaining global food security. Conventional farming operations commonly employ artificial/chemical fertilizers to increase crop output, but these have several detrimental environmental and human health consequences. Researchers have long focused on alternative crop fertilization methods, and biofertilizers are becoming increasingly common in agriculture worldwide. Biofertilizers, made from indigenous plant growth-promoting rhizobacteria, are a cost-effective and environmentally friendly way to enhance crop productivity. This article provides an overview of microbial inoculants as biofertilizers, covering their types, modes of action, crop productivity impacts, problems, and limitations. This article focuses on the use of biofertilizers in agriculture to promote plant growth through nitrogen fixation, phytohormone production, siderophore generation, nutrient solubilization, and easy uptake by crop plants. This review article discusses how microbial inoculants might improve agricultural productivity and their challenges and limitations.

Keywords: Microbial inoculants; Biofertilizers; Crop productivity; Nitrogen fixation; Phytohormones; Nutrient solubilization


Introduction

Soil microorganisms are required for both effective nutrient control and soil biodiversity. They are necessary for plant development and growth. In recent years, chemical fertilizers have been employed in agriculture to increase food production and independence for the country, but at the expense of the environment and the health of all living beings. Overusing these fertilizers in farming is costly and has many negative consequences for soil fertility. Beneficial microorganisms offer alternatives to traditional farming approaches for addressing our agricultural needs. Biofertilizers are safer compared to chemical fertilizers, they are more concentrated have fewer negative environmental effects, and function better in smaller quantities. Furthermore, microbial inoculants degrade faster and are less likely to cause resistance to diseases and pests [1]. Because bioinoculants are ecologically friendly but exceptionally powerful and may be used as biopesticides without harming plant products, they have no adverse effects on soil-dwelling animals and plant life. The plant needs mineral nutrients, which can only be obtained through the direct or indirect application of chemical fertilizers in conjunction

with organic manure and biofertilizers to boost the content of organic soil and ensure sustainability in fields and horticultural crops [2]. Organisms like bacteria, fungi, and other microbes are microbial inoculants that are introduced into an environment to achieve a specific aim, such as biocontrol or plant development [3]. The word "bio-fertilizer" refers to a wide range of products that contain active or dormant microorganisms such as bacteria, fungi, actinomycetes, and algae. Some bacteria secrete compounds that enhance plant growth, these bacteria help fix atmospheric nitrogen and solubilize or mobilize soil nutrients upon application [4]. In addition to numerous other products, biofertilizers, and biopesticides are now available as alternatives to standard synthetic pesticides, inorganic fertilizers, and inorganic fertilizers, respectively. From 2022 to 2027, the biofertilizer market is predicted to rise at a compound yearly 12.1% growth rate, from 1.57 billion in 2018 [5]. The market is tremendously fragmented because of the vast number of small and large businesses operating in various locations. Because it is now mostly unregulated, the biofertilizer market is dominated by numerous small businesses; however, if rules are enforced, as has occurred in the global market

for biopesticides, the market may become more concentrated [6]. Furthermore, because they occur naturally in the rhizosphere, are non-pathogenic, environmentally friendly, and directly increase plant yield, PGPRs are a distinct class of microbes that influence plant defense mechanisms and provide host resistance to further pathogen attack via an incredibly diverse mechanism. As a result, they are regarded as more effective biocontrol agents than traditional chemical fertilizers [7]. PGPRs can directly or indirectly influence plant development and stimulate the development of plant growth by releasing mineral nutrients into soils, controlling or inhibiting phytopathogens, producing various plant growth regulators, improving bioremediation and soil structure by separating toxic heavy metals, and reducing chemical compounds such as fungicides and pesticides [8-10]. In addition to the mentioned roles, PGPRs also contribute to various defense mechanisms in plants by synthesizing volatiles, biosurfactants, antibiotics, siderophores, and enzymes that degrade cell walls and raise systemic resistance (ISR). PGPRs comprise an extensive range of symbiotic and non-symbiotic bacterial species from the genera Azotobacter, Klebsiella, Azospirillum, Bacillus, Serratia, and Enterobacter [11]. Many researchers are continuously working to better understand the diversity, importance, and functions

that biofertilizers play in improving agricultural sustainability. Plant age, species, soil conditions, growth phases, and soil types all influence the impacts of PGPRs [12]. Enhancing plant nutrient absorption is an important function of PGPR that is suitable for crop development [13,14]. PGPRs resist the loss of plant development caused by a variety of stresses [15], consisting of heavy metals stress [16], waterlogging stress [17], salt stress [18,19], drought stress [20], and other unfavorable environmental conditions. PGPR inoculation reduces plant stress, which improves growth, fitness, nutrient uptake, and production. PGPRs are thus necessary for continuous, advantageous agricultural reasons, such as increasing soil fertility and crop yields in tough conditions. In recent decades, PGPRs have been increasingly used for safe and secure agriculture around the world. The lack of superior bioinoculants is the biggest obstacle to farmer's success. Azolla, Azotobacter, Acetobacter, Bacillus thuriengensis, Trichoderma, and Azospirillum must be carefully considered before being employed in grain and vegetable crops. These biofertilizers are used in conjunction with chemical fertilizers and organic manures to increase soil organic carbon content and ensure crop viability [2] (Figure 1).

The goal of this paper is to provide an overview of the value of biofertilizers using microbial inoculants and how they improve crop output. This review offers an in-depth investigation of the Bio inoculants have both direct and indirect methods, including symbiotic and non-symbiotic biological nitrogen fixation,

production of phytohormones, solubilization of nutrients (phosphate and potassium), production of siderophores, and biocontrol of phytopathogens, chitinases, HCN, and other antifungal properties, to boost crop yield.

Action Mechanism of PGPR

PGPR: Direct mechanism

Biological nitrogen fixation (BNF)

Nitrogen is the main nutrient for the growth of plants and is regarded as the fourth most important component of dry biomass in plants. It has an important function in membrane lipids, enzymes, structural proteins, and genetic material [21]. The majority of nitrogen seems to be unavailable to plants and animals in gaseous form. The application of nitrogen-fixing

bacteria (PGPRs) to plant yield results in disease control, growth promotion, and nitrogen retention [22]. BNF is a technology that uses microbes such as actinomycetes, eubacteria, and blue-green algae to help convert atmospheric nitrogen into ammonia via a reduction cycle.

Each kind is converted by a unique process in various crops and is shown in Table 1 & 2. Naturally, biological nitrogen fixation—the method by which bacteria fix 70% of the nitrogen—and physical and chemical processes fix another 30% of the nitrogen [2].

Table 1: Biological nitrogen fixation can be classified as either free-living or associative.

Free-living/Non-symbiotic/Symbiotic	Crops	Ref.
Azotobacter, Azospirillum Azospirilliun sp., Pseudomonas sp.	Potato	[33]
Herbaspirillum sp., Bacillus sp.	Sugarcane	[34]
Pasteurella multicida, K. pneumonia, K. oxycota Acetobacter		
Azospirillum brasilense	Wheat	[36]
Pseudomonas sp. P. mosselii		[37]
Stenotrophomonas maltophilia, Chryseobacterium		[38]
Pseudomonas sp, S. marcescens	Rice	[39]
Anabaena, Azolla K. pneumonia, B. subtilis, Microbacterium		[40]
Rhizobium sp.	Beans, Peas,	[41]
Bradyrhizobium	Green gram (Vigna radiate)	[26]
Rhizobium japonicum	Soybean (Glycine max)	[42]
Bradyrhizobium		[43]
B. subtilis, B. lichenoformis	Chickpea	[44]
P. agglomerans, B. cereus		[45]
Bacillus sp. Klebsiella sp.	Maize	[46]
B. majavensis, P. aeruginosa,		[47]
Bacillus, Pseudomonas sp.	Sorghum and chilli	[48]
Frankia	Actinorhizal plants	

Table 2: Displays the amount of nitrogen fixed by various microbial inoculants.

State	Aerobic/ Anaerobic	Bacteria	Crop	Amount of N ₂ fixed Kg/ha/year	Ref.
		Azotobacter		10 to 20	[2]
	Aerobic	Azotobacter	Dryland Crops	20 -25	[4]
	Anaerobic	Clostridia		2 to 5	
Free-living	Facultative	Klebsiella		5 to 10	
		Rhizobia		50-500	[2]
	Legumes	Rhizobium strain	Groundnut, Soybean	50-200	[4]
		Azospirillium		5 to 20	
		Acetobacter		150	
Symbiotic	Non-legumes	Anabaena	Rice	600	[40,49]
		Anabaena		20 - 25	[2]
		Azolla		70-100	
Blue-Green Algae		Azolla	Rice	30-100	[4]

Symbiotic nitrogen fixation (SNF)

The mutualistic association between bacteria and plants is known as symbiotic nitrogen fixation (SNF). Symbiotic nitrogenfixing bacteria may access all types of plants and fix atmospheric nitrogen in a symbiotic manner. When a plant starts producing iso-flavonoids and flavonoids in its rhizosphere, Rhizobium sees this as the start of a mutualistic relationship [23]. Rhizobium, Bradyrhizobium, Sinorhizobium, and Mesorhizobium are examples of bacteria that coexist with leguminous plants symbiotically, while Frankia coexists symbiotically with shrubs and non-leguminous plants [24]. Rhizobium is the most common symbiotic nitrogenfixing bacteria in legume crops. In addition to bacteria, certain small ferns act as symbiotic nitrogen fixers. As an example, the tiny, free-floating aquatic fern Azolla interacts with cyanobacteria (Anabaena) to fix nitrogen from the atmosphere. In exchange for fixed nitrogen, Azolla provides Anabaena with optimal circumstances, nutrition, and phytohormones. The nitrogenfixing phenomenon occurs in Anabaena's heterocyst cells. Azolla mostly aids rice growing by incorporating biomass and nitrogen fertilizer into the soil. Actinorhizal plants can acquire root nodules from actinomycetes such as Frankia. Some genera, such as Myrica, Allocasuarina, Eleagnus, Coriaria, and Casuarina, can nodulate Frankia. These plants are monocots with an assurance future in agriculture and reclaimed land. Bacillus and Azotobacter species fix nitrogen, which stimulates the growth and development of forest crops and maize plants [25]. Bradyrhizobium japonicum inoculation enhanced soybean plant growth, and nitrogen fixation

Free-living or nonsymbiotic nitrogen fixation

Plants' root zones include free-living nitrogen fixers, which feed on and absorb nutrients. Diazotrophs also help in nonsymbiotic nitrogen fixation by stimulating the growth of nonleguminous plants like radish and rice. Enterobacter, Azotobacter, Burkholderia, Diazotrophicus, Pseudomonas, Gluconacetobacter, and Cyanobacteria (Nostoc, Anabaena) are examples of rhizopheric bacteria that do not fix nitrogen symbiotically [27,28]. Azotobacter chroococcum can fix 10mgN/g of carbon source in vitro, indicating that it can be employed as a biofertilizer [29]. A. brasilense decreases N fertilization, improves plant nutrition, increases plant biomass, and boosts wheat grain output [30]. Acetobacter, Herbaspirillum, Diazotrophicus, and Azospirillum, are nitrogen-fixing bacteria that thrive with C4 plants such as bajra, maize, sorghum, sugarcane, and cereals including rice, barley, and wheat [31]. Azospirillum inoculation yielded notable outcomes in sorghum, wheat, maize, and other grass seedlings. The total nitrogen requirement of rice and corn is about 25% which is contributed by bacteria [32].

Production of Siderophores

Antibiosis is carried out by small organic molecules known as siderophores, which provide crops with iron (Fe), depriving

pathogens of iron [50]. One of the important mineral elements is iron for the growth and development of plants and it serves as a cofactor for proteins involved in metabolic activities such as respiration and photosynthesis [51]. Iron deficiency reduces pathogen growth by blocking essential activities such as sporulation and nucleic acid synthesis [52]. Pseudomonas putida can increase the quantity of iron in the natural environment by utilizing heterologous siderophores produced by other microbes available in the root zone [53]. Using Bacillus sp. that produces siderophores stimulates groundnut plant growth [54]. *Pseudomonas koreensis* prevented the spread of plant diseases by generating siderophores and antioxidant enzymes in maize plants [55]. Siderophores are believed to be plant growth promoters and biocontrol agents for fungal diseases associated with other crops [56]. To clarify the significance of Pseudomonas strain B324 which produces siderophores in fighting Pythium, the pathogen that causes wheat root rot disease, is therefore critical [57]. Table 3 shows some examples of siderophore-producing bacteria associated with various plants. Pseudomonas produces a new similar siderophore called pyroverdine [58]. Mutant Pseudomonas strains produced less pyoverdine and suppressed the fungal pathogen less than their original strains did [59]. As a result, it has been proven that the synthesis of siderophores is an important biological regulatory mechanism. When plants exposed to additional metals such as nickel and cadmium, the ferric siderophore complex is important for iron absorption [60]. PGPRs are valuable assets because they create siderophores that feed plants with the necessary quantity of iron. However, further research is required to discover whether PGPRs can create siderophores. Bacteria also reduce phytopathogens by producing siderophores. The majority of the iron in the rhizosphere is held together by siderophores, which act as iron chelators. Researchers have concentrated on creating microbial inoculants to protect plants from pathogen-caused illnesses.

Solubilization of nutrient

Potassium solubilization

Potassium (K) is the 3rd most significant macronutrient for plants. Insoluble rock made mostly of silicate minerals has greater than 90% potassium. It plays a role in protein synthesis, food intake, regulating opening and closing of stomata, enhancing product quality, and providing adaptability to harsh environmental conditions [61]. It is required for enzyme activation, protein biosynthesis, and photosynthesis. Lack of potassium concentration causes several major problems for plants throughout development, including slow growth, bare roots, and reduced yield and seed production [62]. To maintain crop output, potassium prominence, and plant absorption in the soil should be preserved [63]. The solubilization of potassium rock by PGPRs via the formation and release of organic acids has been extensively researched [64-66]. PGPRs, such as *Paenibacillus* sp., *B. edaphicus*, and *Ferrooxidans* sp., can easily detect potassium levels in soil by

solubilizing and releasing potassium components from potassium-containing minerals [67]. Using potassium-solubilizing PGPRs to increase agricultural nutrients can reduce the application of synthetic fertilizers while promoting sustainable agricultural output [68,69]. Biofertilizers as items containing dormant spores and live microbes or the inoculum they carry that benefit plants, particularly the soil, seed, and root [70]. Potassium solubilizing bacteria to plant seeds typically resulted in a significant improvement in seedling vigor, productivity, potassium uptake, and plant growth [64,71]. The formation of organic acids directly enhances K dissolution via indirect or ligand-mediated mechanism

by creating a compound in solution with reaction products. This is the way KSB distributes potassium to plants. Using Potassium solubilizing bacteria as a biofertilizer can contribute to enhancing environmentally sustainable agricultural output by reducing the need for chemical fertilizers while enhancing plant growth and yield [72]. These technologies are increasingly indispensable in today's agricultural operations. Biofertilizers will make a stronger argument in the upcoming years as farming techniques change and environmental dangers added with chemical fertilizers become more apparent.

Table 3: Some examples of rhizobacteria that solubilize potassium and improve K absorption in various crops.

Function	Plant - Growth Promoting Rhizobacteria (PGPR)	Crops	Ref.
	Bacillus sp., Pseudomonas sp., Serratia sp.	Solanum tuberosum	[90]
	Azospirillum, P. putida,	Triticum aestivum L.	[91]
	Stenotrophomonas maltophilia, chryseobacterium		[38]
Dhaanhata aslahilization	Bacillus sp., Klebsiella sp., Pseudomonas sp.	Cicer arietinum	[92]
Phosphate solubilization	Herbaspirillum sp., Bacillus sp.	Vigna unguiculata	[34]
	B. safensis, B. simplex, Lysinibacillus fusiformis, B. pumilus	Glycine max	[93]
	S. marcescens, Pseudomonas sp.	Oryza sativa	[94]
	P. brassicacerum, Acinetovacter calcoaceticus, P. marginalis	Solanum lycopersicum	[95]
	Pseudomonas sp., Acinetovacter sp., Bacillus sp.	Phaseolus vulgaris	[96]
	B. subtilis, K. oxycota	Zea mays	[97]
	Rhizobium sp.	Vica faba	[98]
Phosphate solubilization	Bacillus, Pseudomonas sp.	Sorghum bicolr	[48]
	B. circulans	Citrus sinensis	[99]
	Pseudomonas sp., Rhizobium, Mesorhizobium, Bacillus, Azotobacter sp.	Leguminous and non-leguminous plant	[100]
	Bacillus sp. KB129, KB133	Sorghum bicolr	[101]
Siderophore production	V. paradox RAA3	Triticum aestivum L.	[102]
	Azotobacter sp. Az63, Az69 and Az70	Zea mays	[103]
	Rhizobacteria sp.	pulses	[104]
	Bacillus amyloliquefaciens ROH14	pepper	[105]
	Bacillus amyloliquefaciens FZB42	Arabidosis	[106]

Phosphate Solubilization

Phosphorus [73] is the 2nd most important element for plants, and it can be absorbed only in monobasic ions or dibasic ions [53,74]. Plants cannot absorb 95-99% of the P in the soil because it is frozen, insoluble, or precipitated. As a result, crops can only consume a tiny percentage of total soil P, and rarely enough [75,76]. It has been proven that a wide spectrum of microorganisms contributes to the biogeochemical cycling of Phosphate in the rhizospheric zone. As a result, inoculants based on Phosphate solubilizing microorganisms (PSM) are expected to become popular in the commercial market soon [77,78]. Researchers are interested in employing a variety of PGPRs as plant inoculants due

to their capacity to solubilize Phosphate [53,79]. These species are commonly mentioned as possible P biofertilizers since many agricultural soils have an intrinsic P shortage [37]. Heterotrophic bacteria known as PSBs were chosen because of their ability to release organic ions with a low molecular weight that acidify the medium, consequently, phosphate compounds that are only slightly soluble in produced media are dissolved [80]. Although PSB produces many enzymes that aid in phosphate solubilization, acidification is frequently used to accelerate this process [39,78]. PSB strains from many taxa, including *Pseudomonas*, *Burkholderia*, and *Bacillus*, have been isolated [81]. A recent study discovered a positive association between *Pseudomonas*

sp. Phosphate solubilizing capabilities and organic acid synthesis [82]. *Bacillus subtilis* protects plants from environmental stress and promotes safflower development [83]. NanoPhos was used in field circumstances to increase the population of bacteria and soil enzymes resulting in higher maize production [84]. *Xanthomonas, Chryseobacterium* [88], *Pantoea, Klebsiella, Enterobacter* [87], *Pseodomonas* sp. [89], and 18 microbial inoculants as biofertilizers. *Azotobacter* [85], *Bacillus, Rhodococcus, Serratia, Arthrobacter, Gordonia, Delftia Phyllobacterium*, sp. [86], *Pantoea, Klebsiella, Enterobacter* [87], *Xanthomonas, Chryseobacterium* [88], and *Pseudomonas* sp. [89].

Phytohormone production

Phytohormones, produced by plants and microorganisms both, have a profound impact on plant growth and development [107]. Plant hormone production refers to the positive phenomenon in which beneficial microorganisms produce ethylene, abscisic acid, gibberellins, cytokinin, and indole-3-acetic acid. Microbes create and transport plant hormones, which are organic compounds capable of causing morphological, physiological, and biochemical effects in plants at extremely low concentrations. These hormones function as signaling molecules, promoting nodulation, increasing nutrient intake, and stimulating root growth [108]. The five main groups of plant hormones are auxin, gibberellins, cytokinins, abscisic acid, and 1-aminocyclopropane-1-carboxylase (ACC). Polyamines and brassinosteroids are also produced in the tissues of growing plants. Plants naturally create phytohormones. Numerous articles have confirmed soil microbes' ability to produce phytohormones, which stimulate plant growth and development [109].

Auxin production

Auxins naturally produce growth hormones. Auxins appear in a variety of forms, but the most frequent one that generates spontaneously is indole-3-acetic acid. participating in regulating plant development. IAA stimulated the growth of lateral roots, apical dominance, cell elongation, differentiation, blooming, fruit set, and ripening [110,111]. Plants use oxidative deamination or decarboxylation processes to convert tryptophan into IAA [112]. Bacillus, Klebsiella, Pseudomonas, Rhizobium, Enterobacter, Bradyrhizobium, Agrobacterium, and Indole-3-pyruvic acid, for example, can synthesize phytohormones via the indole-3-acetamide and indole-3-acetic acid aldehyde pathways [113-115]. Cylindrospermum, Nostoc, Anabeana, Gloeothece, Calothrix, Gloeothece, Plectonema, Chlorogloeopsis, and Gloeothece have all been proven to produce IAA.

Gibberellins production

Tetracyclic diterpenoid compounds that is Gibberellins, have a role in a variety of plant physiological and developmental processes [116]. More than 136 gibberellins are widely distributed in nature [117], with GA3 being the most regularly used and GA1 being the most active. Geranyl diphosphate can be turned into

gibberellins by a variety of methods. GAs activates maximum biological activity, such as fruit growth and floral induction in plants, stem elongation, production of amylolytic enzymes, and seed germination by breaking seed dormancy [118]. Gibberellin synthesis is required for stem growth; low or non-existent gibberellin levels lead plants to grow to a minimum height. Gibberellins are produced by the fungus *Gibberella fujikuroi* as well as the plants themselves. Nonetheless, several studies have shown that PGPRs, such as *Xanthomonas, Pseudomonas, Agrobacterium, Micrococcus, Rhizobium Bacillus, Azospirillum,* and *Clostridium,* produce gibberellins [119-122].

Cytokinin production

Adenine derivatives known as cytokinins regulate cytokinesis in plant tissues [123]. A variety of bacteria, primarily streptomycetes and *Azospirillum, Bacillus, Pseudomonas putida, Pseudomonas fluorescens*, and *Bradyrhizobium* have been shown to produce cytokinin, primarily zeatin [122,124-126]. Plant cytokines increase cell proliferation, root hair growth, and elongation inhibit lateral root, and control root meristem differentiation [127]. Furthermore, cytokinins have a role in influencing plants, delaying leaf aging, and boosting mitotic cell division in shoots and roots [128]. Bacterial inoculation that produces cytokinin promotes plant shoot growth while decreasing the root-to-shoot ratio [129]. *A. chroococcum*, a cytokinin-producing bacterium, was introduced into a maize plant to enhance growth conditions [130].

Abscisic acid (ABA) production

Abscisic acid (ABA), often known as the stress hormone, is primarily involved in plant development and response to environmental stresses such as high salt, temperature, and drought [131]. ABA production enhances water tolerance and drought in plants. Bacteria like *A. brasilense* may increase the amount of ABA generated by plants during water stress and drought by closing stomata and thereby lowering water loss [132]. Furthermore, this causes the formation of lateral roots.

Aminocyclopropane-1- carboxylate (ACC) deaminase production

At very low quantities, ethylene is an important growth hormone that controls plant growth and development [133]. It is also known as a stress hormone because it is produced in both biotic and abiotic stress conditions [28]. At lower doses, it promotes plant growth, but at higher concentrations, it has been demonstrated to be harmful. Ethylene promotes senescence, fruit ripening, and the abscission of numerous plant components by inhibiting auxin transport and stopping root extension [134,135]. Certain PGPRs, such as Rhizobium, Enterobacter, Azospirillum Pseudomonas, Achromobacter, Agrobacterium, brasilense. Azospirillum, Alcaligenes, Serratia, Ralstonia, Burkholderia spp., and others, create ACC directly as a precursor to ethylene. These PGPRs can break down ACC while also promoting plant development by reducing ethylene levels and increasing plant tolerance to harsh conditions [136-138]. Microbes depend upon ACC deaminase hydrolysis to obtain ammonia and α -ketobutyrate, both of which are carbon and nitrogen sources for their growth

[139]. Microorganisms that exhibit ACC deaminase activity are expected to have higher growth and productivity, making them potential sources of biofertilizers [140] (Table 4).

Table 4: Lists the many types of phytohormones that PGPRs create in a variety of crops.

PGPR	Phytohormones	Plant	Ref.
Achromobacter xylosoxidans, Enterobacter cloacae	ACC deminase, IAA	Maize	[143]
25 Acinetobacter sp. ALEB16	Abscisic acid	Atractylodes lancea	[150]
Azospirillum sp.	Cytokinin production	Mimosa pudica	[147]
Bacillus	Cytokinin production	Cucumber	[148]
Bacillus	Gibberellin production	Pepper	[153]
Bacillus amyloliquefaciens QST713	IAA, EPS	Alfalfa (Medicago sativa L.)	[146]
Bacillus circulans	ACC deminase	Mustard	[142]
Bacillus sp.	Gibberellin production	Alder	[151]
Bacillus sp.	ACC deminase, IAA, EPS	Rice	[144]
Bacillus subtilis	IAA	Edible tubercle	[114]
Herbaspirillum seropediacae	IAA	Ocimum sanctum	[17]
Pseudomonas BA-8	Cytokinin production	Strawberry	[149]
Pseudomonas putida	ACC deminase	Tomato	[141]
Pseudomonas putida	IAA	Canola	[145]
Sphingomonas	Gibberellin production	Tomato	[152]

PGPR: Indirect mechanism

ISR: Induced system resistance

Plants have a wide range of active defensive mechanisms that are activated in response to plant diseases. These diseases affect plant health and pose a long-term risk to ecosystem sustainability and food production. Plants have an ISR, which protects them from many diseases and biotic stressors [154]. ISR in plants is mostly induced by Pseudomonas sp. via pathways regulated by jasmonic acid and ethylene [155-158]. P. fluorescence was found to significantly reduce the pathogenicity of phytopathogens such as viruses, fungi, and bacteria while also inducing self-response (ISR) in a variety of plants, including tobacco, radish, and Arabidopsis, via jasmonic acid/ethylene (JA/ET) signaling pathways [159]. According to reports, a different type of plant hormones has been demonstrated to facilitate ISR induction by producing elicitors, which are microorganism-derived compounds [160,161]. Cell wall constituents such as chitin, flagellin, lipopolysaccharides, and others are examples of microbial elicitors [162], volatile organic compounds (VOC) such as alcohols, phenolic compounds, terpenoids, sulfides, and ketones [161], and metabolites such as antibiotics and siderophores [163]. These elicitors work together to regulate plant diseases and trigger the immune system response (ISR) to a variety of pathogens. Occasionally, elicitors generate ISR by interfering with phytohormones required for the plant signaling system, triggering the defense response [164]. Other Bacillus species, including B. pumilus, B. amyloliquefaciens, B. subtilis, B.

cereus, and *B. mycoides*, as well as *Pseudomonas* isolates, have also been shown to produce resistance to a variety of disorders [165]. Dimethyl disulfide (DMDS) produced by *B. cereus* has been shown to activate immunological responses (ISRs) in a variety of pathogenic fungi [166]. Inoculating arabidopsis plants with *P. simiae* leads them to produce the phenolic compound coumarin scopoletin, which acts as an elicitor to reduce soil-borne illnesses [167]. Furthermore, it has been demonstrated that PGPRs may change the physiology and morphology of plant roots in response to pathogen invasion by secreting phytohormones such as auxin, JA, NO, and cytokinins that protect the plant from infection [168-170]. Microbes can boost plant ISR by many processes, such as producing chitinase, β -1,3-glucanase, phenylalanine ammonialyase, peroxidases [171].

Biocontrol of Phytopathogen

Disease development and Pathogen attacks are the leading causes of diminishing crop yield and food product contamination in agricultural plants. Several chemical components, such as insecticides, are used to protect agricultural yield against disease [172]. On the other side, prolonged usage of these pesticides has increased disease resistance and jeopardized the ecology. Thus, biological control is intended to tackle the pathogen onslaught instead of insecticides. Because of their enormous impact on plant health and ability to suppress diseases and illnesses, rhizobacteria are used as biofertilizers, promote plant development, and may operate as phytopathogen biological agents. Disease assaults

are prevented by a range of strategies that use non-toxic and ecologically friendly microorganisms in crop fields. PGPRs from the following genera can function as biocontrol agents: *Enterobacter, Beijerinckia, Derxia, Bacillus, Gluconacetobacter, Rhodococcus, Klebsiella, Acinetobacter, Azotobacter, Azoarcus, Pseudomonas,* and *Azospirillum,* and others [173]. Antibiotic production is the most generally recognized technique by which PGPRs resist infections' damaging effects on plants. Antibiotics derived from *Streptomyces, Stenotrophomonas, Bacillus, Pseudomonas,* and such as amphisin, pyrrolnitrin, hydrogen cyanide (HCN), tropolone, kanosamine, and others, have antifungal, antibacterial, and antiviral properties and protect plants from diseases and foreign pathogens [174].


Chitinase

PGPRs also suppress phytopathogens by enzymatic synthesis. PGPRs, such as *S. marcescens, P. stutzeri, Paenibacillus* sp., and *S. plymuthica*, produce enzymes such chitinase, lipase, protease, and

others that hydrolyze fungal pathogens' chitin, cellulose, proteins, and hemicellulose [175,176].

Hydrogen cyanide (HCN)

Hydrogen cyanide, released by microorganisms such as *Rhizobium, Pseudomonas, Bacillus*, and kills pathogens and protects plants from illnesses [177]. According to El-Rahman et al. [178], *Rhizobacteria* create hydrogen chloride (HCN), which inhibits the growth of *Meloidogyne incognita* and *Agrobacterium tumefacience*. Thus, phytohormone-producing bacteria (PGPRs) are critical microorganisms with a major impact on crop improvement and plant growth development. They provide a variety of tasks, including phytohormone generation, nitrogen fixation, potassium and phosphate solubilization, phytohormone management, siderophore production, and increased soil structure (Figure 2).

Conclusion

While Chemical fertilizers and insecticides are beneficial for disease management and crop production, their continued use is hazardous to human health, the soil environment, and plant life. Using beneficial bacteria as biocontrol agents and biofertilizers is a low-cost and environmentally benign answer to the challenge of sustainable agriculture. Biofertilizers may replace chemical fertilizers and pesticides while increasing crop output, hence their usage in agriculture should be encouraged. Farmers should be educated on the advantages of employing PGPRs as biofertilizers, with an emphasis on commercialization. Consequently, we finalized that PGPRs are extremely beneficial to

agriculture and that employing biofertilizers in agricultural fields is the superior substitute to chemical fertilizers, which negatively impact fauna, flora, and soil health. Microbial inoculants have a bright future as biofertilizers since they provide various benefits over typical chemical fertilizers. Growing knowledge of the harmful environmental effects of conventional farming systems has necessitated the adoption of more sustainable agricultural practices. Furthermore, by reducing dependency on chemical fertilizers and improving soil health, microbial inoculants as biofertilizers can promote sustainable agriculture.

Acknowledgement

The authors are thankful to the Convenor, Prof. Sarita Srivastava, and Principal, Prof. Ajay Prakash Khare, C.M.P. Degree College, University of Allahabad, India for providing the necessary laboratory facility to carry out the research.

References

- DC Suyal, R Soni, S Sai, R Goel (2016) Microbial inoculants as biofertilizer, Microbial Inoculants in Sustainable Agricultural Productivity. Research Perspectives 1: 311-318.
- DV Pathak, M Kumar (2016) Microbial inoculants as biofertilizers and biopesticides. In: Microbial Inoculants in Sustainable Agricultural Productivity, Springer, New Delhi, pp. 197-209.
- LM Kaminsky, RV Trexler, RJ Malik, KL Hockett, TH Bell, (2019) The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol 37(2): 140-151.
- RS Choudhary, NK Yadav (2021) Biofertilizers (microbial inoculants). Just Agriculture 1: 1-10.
- 5. Mordor Intelligence, Global Biofertilisers Market-Growth, Trends and Forecast, 2022, pp. 2022-2027.
- WC Dunham, LLC (2015) Dunham Trimmer, Evolution and future of biocontrol, in: 10th Annual Biocontrol Industry Meeting (ABIM), vol. 20, Basel, Switzerland.
- A Gupta, JM Meyer, R Goel (2002) Development of heavy metal-resistant mutants of phosphate solubilizing *Pseudomonas* sp. NBRI 4014 and their characterization. Curr Microbiol 45(5): 323-327.
- 8. R Hayat, S Ali, U Amara, R Khalid, I Ahmed (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4): 579-598.
- M Ahemad, A Malik (2011) Bioaccumulation of heavy metals by zinc resistant bacteria from agricultural soils irrigated with wastewater. Bacteriol J 2(1): 12-21.
- M Ahemad (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. J Instit Integr Omics Appl Biotechnol (IIOAB) 3(3): 39-46.
- 11. BS Saharan, V Nehra (2011) Plant growth promoting rhizobacteria: a critical review. Int J Life Sci Med Res 21(1): 30.
- 12. D Werner (2000) Organic signals between plants and microorganisms. In: R Pinton, Z Varanini, P Nannipieri (Eds.), The Rhizosphere: Biochemistry and Organic Substances at the Soil Plant Interface, Marcel Dekker, New York, USA, pp. 197-222.
- 13. A Kumar, R Singh, A Yadav, DD Giri, PK Singh, et al. (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6(1): 60.
- 14. Kumar, V Singh, M Singh, PP Singh, SK Singh, et al. (2016) Isolation of

- plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol 8: 1-7.
- 15. 00 Babalola, AI Sanni, GD Odhiambo, B Torto (2007) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J Microbiol Biotechnol 23(6): 747-752.
- 16. KV Kumar, S Srivastava, N Singh, HM Behl (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of *Brassica juncea*. J Hazard Mater 170(1): 51-57.
- 17. D Barnawal, N Bharti, D Maji, CS Chanotiya, A Kalra (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect *Ocimum sanctum* plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58: 227-235.
- 18. HC Kaymak, I Guvenc, F Yarali, MF Donmez (2009) The effects of biopriming with PGPR on germination of radish (*Raphanus sativus* L.) seeds under saline conditions. Turk J Agric For 33(2): 173-179.
- 19. SM Kang, AL Khan, M Waqas, YH You, JH Kim, et al. (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in *Cucumis sativus*. J Plant Interact 9(1): 673-682.
- 20. ZA Zahir, A Munir, HN Asghar, B Shaharoona, M Arshad (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (*Pisum sativum*) under drought conditions. J Microbiol Biotechnol 18(5): 958-963.
- 21. H Marschner, 1995 Mineral Nutrition of Higher Plants, Academic Press, London.
- 22. M Damam, K Kaloori, B Gaddam, R Kausar (2016) Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int J Pharmaceut Sci Rev Res 37(1): 130-136.
- JP Hawkins, IJ Oresnik (2022) The Rhizobium-legume symbiosis: coopting successful stress management. Front Plant Sci 12: 796045.
- 24. HH Zahran (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91(2-3): 143-153.
- 25. M Azeem, MZ Haider, S Javed, MH Saleem, A Alatawi, (2022) Drought stress amelioration in maize (*Zea mays* L.) by inoculation of *Bacillus* spp. Strains under sterile soil conditions. Agriculture 12(1): 50.
- 26. AZ Htwe, SM Moh, KM Soe, K Moe, T Yamakawa (2019) Effects of biofertilizer produced from *Bradyrhizobium* and *Streptomyces griseoflavus* on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of mung bean, cowpea, and soybean. Agronomy 9(2): 77.
- 27. JK Vessey (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2): 571-586.
- 28. PN Bhattacharyya, DK Jha (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4): 1327-1350.
- 29. A Mukherjee, AK Gaurav, S Singh, S Yadav, S Bhowmick, et al. (2022) The bioactive potential of phytohormones: a review. Biotechnol Rep 35: e00748.
- 30. FS Galindo, PH Pagliari, GC Fernandes, WL Rodrigues, EHM Boleta, et al. (2022) Improving sustainable field-grown wheat production with *Azospirillum brasilense* under tropical conditions: a potential tool for improving nitrogen management. Front Environ Sci 10: 821628.
- 31. M Yasuda, KMG Dastogeer, E Sarkodee-Addo, C Tokiwa, T Isawa, et al. (2022) Impact of *Azospirillum* sp. B510 on the rhizosphere microbiome of rice under field conditions. Agronomy 12: 1367.

- 32. A Montanez, A Rodriguez Blanco, C Barlocco, M Beracochea, M Sicardi (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (*Zea mays* L.) and their inoculation effects *in vitro*. Appl Soil Ecol 58: 21-28.
- MA Abdel-Salam, AS Shams (2021) Feldspar-K fertilization of potato (Solanum tuberosum L.) augmented by biofertilizer. J Agric Environ Sci 12(6): 694-699.
- 34. J Manoel da Silva, TM Carvalho dos Santos, L Santos de Albuquerque, Y Coentro Montaldo, J Ubaldo Lima de Oliveira, et al. (2015) Potential of the endophytic bacteria ('Herbaspirillum' spp. And 'Bacillus' spp.) to promote sugarcane growth. Aust J Crop Sci 9(8): 754-760.
- JM Crespo, JL Boiardi, MF Luna (2011) Mineral phosphate solubilization activity of *Gluconacetobacter diazotrophicus* under P-limitation and plant root environment. Agric Sci 2(1): 16-22.
- 36. N Karimi, MJ Zarea, S Mehnaz (2018) Endophytic *Azospirillum* for enhancement of growth and yield of wheat. Environ Sustain 1: 149-
- 37. S Emami, HA Alikhani, AA Pourbabaei, H Etesami, B Motashare Zadeh, et al. (2018) Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria. Soil Sci Plant Nutr 64(6): 719-727.
- 38. SH Youseif (2018) Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Ann Agric Sci (Cairo) 63(1): 25-35.
- 39. E Bakhshandeh, H Pirdashti, KS Lendeh (2017) Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol Eng 103: 164-169.
- 40. Q Fattah (2005) A Plant Resources for Human Development. In: Third International Botanical Conference 2005, Bangladesh Botanical Society, Dhaka, Bangladesh.
- 41. M Choudhary, BA Patel, VS Meena, RP Yadav, PC Ghasal, (2019) Seed bio-priming of green gram with *Rhizobium* and levels of nitrogen and sulphur fertilization under sustainable agriculture. Legume Res-An Int J 42(2): 205-210.
- 42. S Yousaf, A Zohaib, SA Anjum, T Tabassum, T Abbas, et al. (2018) Effect of seed inoculation with plant growth promoting rhizobacteria on yield and quality of soybean. Pakistan J Agric Res 32(1): 177-184.
- 43. AZ Htwe, SM Moh, K Moe, T Yamakawa (2019) Biofertilizer production for agronomic application and evaluation of its symbiotic effectiveness in soybeans. Agronomy 9(4): 162.
- 44. R Saini, SS Dudeja, R Giri, V Kumar (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55(1): 74-81.
- 45. R Maheshwari, N Bhutani, P Suneja (2019) Screening and characterization of siderophore producing endophytic bacteria from *Cicer arietinum* and *Pisum sativum* plants. J Appl Biol Biotechnol 7(5): 7-14.
- 46. V Sandhya, M Shrivastava, SZ Ali, V Sai Shiva Krishna Prasad (2017) Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ Agric Sci 43(1): 22-34.
- 47. AK Akintokun, E Ezaka, PO Akintokun, OB Shittu, LB Taiwo (2019) Isolation, screening and response of maize to plant growth promoting Rhizobacteria inoculants. Sci Agric Bohem 50(3): 181-190.
- 48. DS Archana, MS Nandish, VP Savalagi, AR Alagawadi (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet-A Q J Life Sci 10(1b): 248-257.

- JR Postgate (1982) The Fundamentals of Nitrogen Fixation, Cambridge University Press.
- 50. IV Maksimov, RR Abizgil'Dina, LI Pusenkova (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl Biochem Microbiol 47(4): 333-345.
- 51. D Gao, C Ran, Y Zhang, X Wang, S Lu, et al. (2022) Effect of different concentrations of foliar iron fertilizer on chlorophyll fluorescence characteristics of iron-deficient rice seedlings under saline sodic conditions. Plant Physiol Biochem 185: 112-122.
- 52. S Mathiyazhagan, K Kavitha, S Nakkeeran, G Chandrasekar, K Manian, et al. (2004) PGPR mediated management of stem blight of *Phyllanthus amarus* (Schum and Thonn) caused by *Corynespora cassiicola* (Berk and Curt) Wei. Arch Phytopathol Plant Protect 37(3): 183-199.
- 53. S Gouda, RG Kerry, G Das, S Paramithiotis, HS Shin, et al. (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206: 13-140.
- 54. S Sarwar, A Khaliq, M Yousra, T Sultan, N Ahmad, et al. (2020) Screening of siderophore-producing PGPRs isolated from groundnut (*Arachis hypogaea* L.) rhizosphere and their influence on iron release in soil. Commun Soil Sci Plant Anal 51(12): 1680-1692.
- 55. N Ghazy, S El-Nahrawy, (2021) Siderophore production by *Bacillus subtilis* MF497446 and *Pseudomonas koreensis* MG209738 and their efficacy in controlling *Cephalosporium maydis* in maize plant. Arch Microbiol 203(3): 1195-1209.
- 56. PR Battu, MS Reddy (2009) Siderophore-mediated antibiosis of rhizobacterial fluorescent *Pseudomonas* against rice fungal pathogens. Int J Pharm Tech Res 1(2): 227-229.
- 57. JO Becker, RJ Cook (1988) Role of siderophore in suppression of Pythium species and production of increased growth response of wheat by fluorescent Pseudomonas. Phytopathology 78: 778-782.
- 58. Schippers, AW Bakker, PAH (1987) Bakker, Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25: 339-358.
- 59. JE Loper, MD Henkels (1999) Utilization of heterologous siderophores enhances level of iron available to *Pseudomonas putida* in the rhizosphere. Appl Environ Microbiol 65(12): 5357-5363.
- 60. A Beneduzi, A Ambrosini, LM Passaglia (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4 (suppl)): 1044-1051.
- 61. S Santosh, K Velmourougane, RG Idapuganti, A Manikandan, D Blaise (2022) Potassium solubilizing potential of native bacterial isolates from cotton rhizosphere of rainfed vertisols. Natl Acad Sci Lett 45(3): 200-212
- 62. D Nath, BR Maurya, VS Meena (2017) Documentation of five potassiumand phosphorus- solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocata Agric Biotechnol 10: 174-181.
- 63. P Kumar, RC Dubey (2012) Plant growth promoting rhizobacteria for biocontrol of phytopathogens and yield enhancement of *Phaseolus vulgaris* L. J Curr Perspect Appl Microbiol 1: 6-38.
- 64. VS Meena, BR Maurya, JP Verma (2014) Does a rhizospheric microorganism enhance K + availability in agricultural soils? Microbiol Res 169(5-6): 337-347.
- 65. SS Sindhu, P Parmar, M Phour, A Sehrawat, (2016) Potassium-solubilizing Microorganisms (KSMs) and its Effect on Plant Growth Improvement. Potassium Solubilizing Microorganisms for Sustainable Agriculture, Springer, India, pp. 171-185.

- 66. I Bahadur, BR Maurya, VS Meena, M Saha, A Kumar, et al. (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral- solubilizing Rhizobacteria isolated from Indo-Gangetic Plain of India. Geomicrobiol J 34(5): 454-466.
- 67. D Liu, B Lian, H Dong (2012) Isolation of *Paenibacillus* sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5): 413-421.
- 68. TC Setiawati, L Mutmainnah (2016) Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric Agric Sci Procedia 9: 108-117.
- 69. Y Wei, Y Zhao, Y Fan, Q Lu, M Li, et al. (2017) Impact of phosphate solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting. Bioresour Technol 241: 134-141.
- 70. B Hamid, Z Bashir (2019) Potassium solubilizing microorganisms: an alternative technology to chemical fertilizers. J Res Dev 19: 79-84.
- 71. IP Anjanadevi, NS John, KS John, ML Jeeva, RS Misra (2016) Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. J Basic Microbiol 56(1): 67-77.
- 72. H Etesami, S Emami, HA Alikhani (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects A review. J Soil Sci Plant Nutr 17(4): 897-911.
- 73. D Goswami, JN Thakker, PC Dhandhukia (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1): 1127500.
- 74. M Verma, J Mishra, NK Arora (2019) Plant growth-promoting rhizobacteria: diversity and applications. Environ Biotechnol: For Sustainable Future, pp. 129-173.
- 75. ET Alori, BR Glick, OO Babalola (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8: 971.
- 76. H Malhotra, S Sharma, R Pandey (2018) In: M Hasanuzzaman, M Fujita, H Oku, K Nahar, B Hawrylak-Nowak (Eds.), Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. Plant nutrients and Abiotic Stress Tolerance, Springer, Singapore, pp. 171-190.
- 77. JJ Parnell, R Berka, HA Young, JM Sturino, Y Kang, et al. (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7: 1110.
- MM Rafi, MS Krishnaveni, PBBN Charyulu, (2019) Phosphatesolubilizing microorganisms and their emerging role in sustainable agriculture. Recent Dev Appl Microbiol Biochem, pp. 223-233.
- 79. N Oteino, RD Lally, S Kiwanuka, A Lloyd, D Ryan, et al. (2015) Plant growth promotion induced by phosphate solubilizing endophytic *Pseudomonas* isolates. Front Microbiol 6: 745.
- 80. NJ Barrow, H Lambers, (2022) Phosphate-solubilising microorganisms mainly increase plant phosphate uptake by effects of pH on root physiology. Plant & Soil 476: 397-402.
- 81. PCL Hsu, L Condron, M O'Callaghan, MR Hurst (2015) hemX is required for production of 2-ketogluconate, the predominant organic anion required for inorganic phosphate solubilization by B urkholderia sp. H a185. Environ Microbiol Rep 7(6): 918-928.
- 82. Q Zeng, X Wu, X Wen (2016) Identification and characterization of the rhizosphere phosphate-solubilizing bacterium *Pseudomonas frederiksbergensis* JW-SD2, and its plant growth-promoting effects on poplar seedlings. Ann Microbiol 66(4): 1343-1354.
- 83. T Zhang, F Hu, L Ma (2019) Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth. Open Life

- Sci 14(1): 246-254.
- 84. A Chaudhary, H Parveen, P Chaudhary, H Khatoon, P Bhatt (2021) Rhizospheric Microbes and Their Mechanism, Microbial technology for sustainable environment, pp. 79-93.
- 85. V Kumar, RK Behl, N Narula (2001) Establishment of phosphate-solubilizing strains of *Azotobacter chroococcum* in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiol Res 156(1): 87-93.
- 86. PA Wani, A Zaidi, AA Khan, MS Khan (2005) Effect of phorate on phosphate solubilization and indole acetic acid releasing potentials of rhizospheric microorganisms. Ann Plant Protect Sci 13(1): 139-144.
- 87. H Chung, M Park, M Madhaiyan, S Seshadri, J Song, et al. (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37(10): 1970-1974.
- 88. AV Singh, R Chandra, R Goel (2013) Phosphate solubilization by *Chryseobacterium* sp. and their combined effect with N and P fertilizers on plant growth promotion. Arch Agron Soil Sci 59(5): 641-651.
- 89. A Rani, Y Souche, R Goel (2013) Comparative *in situ* remediation potential of *Pseudomonas putida* 710A and *Commamonas aquatica* 710B using plant (*Vigna radiata* (L.) wilczek) assay. Ann Microbiol 63: 923-928.
- 90. NM Abd El-Moaty, HM Khalil, HH Gomaa, MA Ismail, KA El-Dougdoug, (2018) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting. Middle East J Appl Sci 8(2): 554-566.
- 91. HR Zabihi, GR Savaghebi, K Khavazi, A Ganjali, M Miransari, (2011) *Pseudomonas* bacteria and phosphorous fertilization, affecting wheat (*Triticum aestivum* L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant 33: 145-152.
- D Chhabra, P Sharma (2019) Non rhizobial endophytic bacteria from Chickpea (*Cicer arietinum* L.) tissues and their antagonistic traits. J Appl Nat Sci 11(2): 346-351.
- 93. IM Kadmiri, L Chaouqui, SE Azaroual, B Sijilmassi, K Yaakoubi, et al. (2018) Phosphate-solubilizing and auxin-producing rhizobacteria promote plant growth under saline conditions. Arabian J Sci Eng 43: 3403-3415.
- 94. SS Kolekar, PD Desai, HK Pancahal, KB Shah (2017) Study of phosphate solubilizing microorganisms with biofertilizer potential. Int J Pharma Bio Sci 8(2): 751-757.
- 95. AR Castillo, M Gerding, P Oyarzúa, E Zagal, J Gerding, et al. (2019) Plant growth-promoting rhizobacteria able to improve NPK availability: selection, identification and effects on tomato growth. Chil J Agric Res 79(3): 473-485.
- 96. A Kumar, A Kumar, S Devi, S Patil, C Payal, et al. (2012) Isolation, screening and characterization of bacteria from Rhizospheric soils for different plant growth promotion (PGP) activities: an *in vitro* study. Recent Res Sci Technol 4(1): 1-5.
- 97. M Imran, SM Shahzad, MS Arif, T Yasmeen, B Ali, et al. (2020) Inoculation of potassium solubilizing bacteria with different potassium fertilization sources mediates maize growth and productivity. Pakistan J Agric Sci 57(4): 1045-1055.
- 98. GV Shravanthi, P Panchatcharam, Shijila Rani AS, V Ambikapathy, (2019) Screening of potassium solubilizing bacteria and their growth promoters. J Pharmacogn Phytochem 8(2): 661-664.
- EA Shaaban, MS El-Shamma, S El-Shazly, A El-Gazzar, RE Abdel-Hak (2012) Efficiency of rock-feldspar combined with silicate dissolving bacteria on yield and fruit quality of Valencia orange fruits in reclaimed soils. J Appl Sci Res (August), pp. 4504-4510.

- 100. T Verma, P Pal (2020) Isolation and Screening of Rhizobacteria for various plant growth promoting attributes. J Pharmacogn Phytochem 9(1): 1514-1517.
- 101. M Grover, S Bodhankar, A Sharma, P Sharma, J Singh, et al. (2021) PGPR mediated alterations in root traits: way toward sustainable crop production. Front Sustain Food Syst 4: 618230.
- 102. D Chandra, R Srivastava, VVSR Gupta, CMM Franco, AK Sharma (2019) Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (*Triticum aestivum* L.) plants. Can J Microbiol 65(5): 387-403.
- 103. S Shirinbayan, H Khosravi, MJ Malakouti, (2019) Alleviation of drought stress in maize (*Zea mays*) by inoculation with *Azotobacter* strains isolated from semi-arid regions. Appl Soil Ecol 133: 138-145.
- 104. AK Andy, SA Masih, VS Gour (2020) Isolation, screening and characterization of plant growth promoting rhizobacteria from rhizospheric soils of selected pulses. Biocatal Agric Biotechnol 27: 101685.
- 105. S Gupta, S Pandey (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (*Phaseolus vulgaris*) plants. Front Microbiol 10: 1506.
- 106. X Lu, SF Liu, L Yue, X Zhao, YB Zhang, et al. (2018) Epsc involved in the encoding of exopolysaccharides produced by *Bacillus amyloliquefaciens* FZB42 Act to boost the drought tolerance of *Arabidopsis thaliana*. Int J Mol Sci 19(12): 3795.
- 107. M Usman, D Balsalobre-Lorente, A Jahanger, P Ahmad (2022) Pollution concern during globalization mode in financially resourcerich countries: do financial development, natural resources, and renewable energy consumption matter? Renew Energy 183: 90-102.
- 108. JAL Garcia, A Probanza, AB Ramos, J Barriuso, FJG Manero (2004) Effect of inoculation with plant growth promoting rhizobacteria (PGPRs) and *Sinorhizobium fredii* on biological nitrogen fixation, nodulation and growth of *Glycine max* cv. Osumi. Plant Soil 267: 143-153
- 109. S Spaepen, S Dobbelaere, A Croonenborghs, J Vanderleyden, (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312: 15-23.
- 110. P Calvo, L Nelson, JW Kloepper (2014) Agricultural uses of plant biostimulants. Plant Soil 383: 3-41.
- 111. M Numan, S Bashir, Y Khan, R Mumtaz, ZK Shinwari, et al. (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209: 21-32.
- 112. M Ahemad, MS Khan (2011) Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing *Pseudomonas aeruginosa*. Acta Microbiol Immunol Hung 58(3): 169-187.
- 113. P Hariprasad, SR Niranjana (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316: 13-24.
- 114. MR Swain, SK Naskar, RC Ray (2007) Indole-3-acetic acid production and effect on sprouting of Yam (*Dioscorea rotundata* L.) minisetts by *Bacillus subtilis* isolated from culturable cowdung microflora. Pol J Microbiol 56(2): 103-110.
- 115. U Bharucha, P Kamlesh, B Ujjval, Trivedi (2013) Optimization of indole acetic acid production by *Pseudomonas putida* UB1 and its effect as plant growth-promoting rhizobacteria on mustard (*Brassica nigra*). Agric Res 2(3): 215-221.
- 116. A Crozier, Y Kamiya, G Bishop, T Yokota, (2001) Biosynthesis of hormones and elicitors molecules. In: BB Buchanan, W Grussem, RL

- Jones (Eds.), Biochemistry and Molecular Biology of Plants, American Society of Plant Biologists, Rockville, pp. 850-900.
- 117. Kozaki, T Aoyanagi (2022) Molecular aspects of seed development controlled by gibberellins and abscisic acids. Int J Mol Sci 23(3): 1876.
- 118. VM Sponsel (2002) The deoxyxylulose phosphate pathway for the biosynthesis of plastidic isoprenoids: early days in our under-standing of the early stages of gibberellin biosynthesis. J Plant Growth Regul 20(4)s: 332-345.
- 119. R Janzen, S Rood, J Dormar, W McGill (1992) *Azospirillum brasilense* produces gibberellins in pure culture and chemi-cally-medium and in co-culture on straw. Soil Biol Biochem 24(10): 1061-1064.
- 120. F Cassan, R Bottini, G Schneider, P Piccoli (2001) *Azospirillum brasilense* and *Azospirillum lipoferum* hydrolyze conjugates of GA glycones to GA 1 20 in seedlings of rice dwarf mutants. Plant Physiol 125(4): 2053-2058.
- 121. J MacMillan, (2002) Occurrence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20(4): 387-442.
- 122. HA AlAli, A Khalifa, M Al-Malki (2021) Plant growth promoting rhizobacteria from *Ocimum basilicum* improve growth of *Phaseolus vulgaris* and *Abelmoschus esculentus*. South Afr J Bot 139: 200-209.
- 123. Skoog, FN Strong, CO Miller (1965) Cytokinins. Sci 148(3669): 532-533.
- 124. D Perrig, ML Boiero, OA Masciarelli, C Penna, OA Ruiz, et al. (2007) Plant-growth-promoting compounds produced by two agronomically important strains of *Azospirillum brasilense*, and implications for inoculant formulation. Appl Microbiol Biotechnol 75(5): 1143-1150.
- 125. IE de García Salamone, RK Hynes, LM Nelson (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5): 404-411.
- 126. A Hussain, S Hasnain, (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3(11): 704-712.
- 127. M Riefler, O Novak, M Strnad, T Schmülling, (2006) *Arabidopsis* cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18(1): 40–54.
- 128. S De Pascale, Y Rouphael, G Colla (2017) Plant biostimulants: innovative tool for enhancing plant nutrition in organic farming. Eur J Hortic Sci 82(6): 277-285.
- 129. TN Arkhipova, E Prinsen, SU Veselov, EV Martinenko, AI Melentiev, et al. (2017) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292: 305-315.
- 130. KF Nieto, WT Frankenberger Jr (1991) Influence of adenine, isopentyl alcohol and *Azotobacter chroococcum* on the vegetative growth of *Zea mays*. Plant Soil 135: 213-221.
- 131. T Miyakawa, Y Fujita, K Yamaguchi-Shinozaki, M Tanokura (2013) Structure and function of abscisic acid receptors. Trends Plant Sci 18(5): 259-266.
- 132. Bauer, P Ache, S Lautner, J Fromm, W Hartung, et al. (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 23(1): 53-57.
- 133. M Ahemad, M Kibret, (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1): 1-20.
- 134. BR Glick, Z Cheng, J Czarny, J Duan (2007) Promotion of plant growth by ACC deaminase producing soil bacteria (review). Eur J Plant Pathol 119(3): 329-339.

- 135. Y Yuan, M Zu, L Sun, J Zuo, J Tao (2022) Isolation and Screening of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing PGPR from *Paeonia lactiflora* rhizosphere and enhancement of plant growth. Sci Hortic 297: 110956.
- 136. P Pandey, SC Kang, DK Maheshwari (2005) Isolation of endophytic plant growth promoting *Burkhoderia* sp. MSSP from root nodules of *Mimosa pudica*. Curr Sci 89(1): 177-180.
- 137. Shaharoona, M Arshad, A Khalid (2007) Differential response of etiolated pea seedling to 1-aminocyclopropane-1-carboxylate and/or L-methionine utilizing rhizobacteria. J Microbiol 45(1): 15-20.
- 138. BG Kang, WT Kim, HS Yun, SC Chang (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4: 179-183.
- 139. C Prigent-Combaret, D Blaha, JF Pothier, L Vial, MA Poirier, et al. (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other proteobacteria. FEMS Microbiol Ecol 65(2): 202-219.
- 140. B Shaharoona, M Arshad, ZA Zahir (2006) Effect of plant growth promoting rhizobacteria containing ACC deaminase on maize (*Zea mays* L.) growth under axenic conditions and on nodulation in mung bean (*Vigna radiata* L.). Lett App Microbiol 42(2): 155-159.
- 141. VP Grichko, BR Glick (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biochem 39: 11-17.
- 142. S Ghosh, JN Penterman, RD Little, R Chavez, BR Glick (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41: 277-281.
- 143. S Danish, M Zafar-ul-Hye, S Fahad, S Saud, M Brtnicky, et al. (2020) Drought stress alleviation by ACC deaminase producing *Achromobacter xylosoxidans* and *Enterobacter cloacae*, with and without timber waste biochar in maize. Sustainability 12(15): 6286.
- 144. A Joshi, A Chaudhary, H Singh, PA Kumar (2020) Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (*Oryza sativa* L.). Plant Soil 457: 225-240.
- 145. F Ahmad, I Ahmad, MS Khan (2005) Indole acetic acid production by the indigenous isolates of *Azotobacter* and fluorescent *Pseudomonas* in the presence and absence of tryptophan. Turk J Biol 29(1): 29-34.
- 146. L Han, M Zhang, L Du, L Zhang, B Li (2022) Effects of *Bacillus amyloliquefaciens* QST713 on photosynthesis and antioxidant characteristics of Alfalfa (*Medicago sativa* L.) under drought stress. Agronomy 12(9): 2177.
- 147. S Sabat, VK Murthy, SL Shantha, D Kushnoor, G Agarwal, et al. (2014) Comparative study of cytokinin production isolated from bacteria and shoot induction. Indian J Biotechnol 13(4): 544-546.
- 148. MG Sokolova, GP Akimova, OB Vaishlya, (2011) Effect of phytohormones synthesized by rhizosphere bacteria on plants. Appl Biochem Microbio 47(3): 274-278.
- 149. R Aslantas, R Cakmakci, F Sahin (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 111: 371-377.
- 150. XM Wang, B Yang, CG Ren, HW Wang, JY Wang, et al. (2015) Involvement of abscisic acid and salicylic acid in signal cascade regulating bacteria. Plant 153(1): 30-42.
- 151. FJ Gutierrez-Manero, B Ramos-Solano, A Probanza, J Mehouachi, FR Tadeo, et al. (2001) The plant-growth-promoting rhizobacteria *Bacillus pumilus* and *Bacillus licheniformis* produce high amounts of physiologically active gibberellins. Physiol Plant 111(2): 206-211.

- 152. AL Khan, M Waqas, SM Kang, A Al-Harrasi, J Hussain, et al. (2014) Bacterial endophyte *Sphingomonas* sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8): 689-695.
- 153. GJ Joo, YM Kim, JT Kim, IK Rhee, JH Kim, et al. (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43(6): 510-515.
- 154. LC van Loon (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, Van Loon LC (Eds.), Mechanisms of Resistance to Plant Diseases. Kluwer, Dordrechet, pp. 521-574.
- 155. CMJ Pieterse, J Ton, LC van Loon (2001) Cross-talk between plant defence signaling pathways: boost or burden? Agric Biotech Net 3: 1-18.
- 156. Z Yan, MS Reddy, CM Ryu, M Mc Inroy, JA Wilson, et al. (2002) Induced systemic protection against tomato late blight elicited by PGPR. Phytopathology 92(12): 1329-1333.
- 157. EH Verbon, PL Trapet, IA Stringlis, S Kruijs, PAHM Bakker, et al. (2017) Iron and immunity. Annu Rev Phytopathol 55: 355-375.
- 158. A Martínez-Medina, SCM Van Wees, CMJ Pieterse (2017) Airborne signals from *Trichoderma* fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid dependent defences in shoots of *Arabidopsis thaliana* and *Solanum lycopersicum*. Plant Cell Environ 40(11): 2691-2705.
- 159. LC Van Loon, PAHM Bakker, CMJ Pieterse (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1): 453-483.
- 160. R Sharifi, CM Ryu (2018) Sniffing bacterial volatile compounds for healthier plants. Curr Opin Plant Biol 44: 88-97.
- 161. S Tyagi, SI Mulla, KJ Lee, JC Chae, P Shukla (2018) VOCs-mediated hormonal signaling and cross talk with plant growth promoting microbes. Crit Rev Biotechnol 38(8): 1277-1296.
- 162. CMJ Pieterse, C Zamioudis, RL Berendsen, DM Weller, SCM Van Wees, et al. (2015) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52: 347-375.
- 163. A Iavicoli, E Boutet, A Buchala, JP Metraux (2003) Induced systemic resistance in *Arabidopsis thaliana* in response to root inoculation with *Pseudomonas fluorescens* CHA0. Mol Plant Microbe Interact 16(10): 851-858.
- 164. CMJ Pieterse, D Vander Does, C Zamioudis, A Leon-Reyes, SCM Van Wees (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28: 489-521.
- 165. G Wu, Y Liu, Y Xu, G Zhang, Q Shen, et al. (2018) Exploring elicitors of the beneficial rhizobacterium *Bacillus amyloliquefaciens* SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Mol Plant Microbe Interact 31(5)s: 560-567.
- 166. CJ Huang, JF Tsay, SY Chang, HP Yang, WS Wu, et al. (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by *Bacillus cereus* C1L. Pest Manag Sci 68(9): 1306-1310.
- 167. IA Stringlis, S Proietti, R Hickman, MC Van Verk, C Zamioudis, et al. (2018) Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J 93(1): 166-180.
- 168. M Shoresh, I Yedidia, I Chet (2005) Involvement of jasmonic acid/ ethylene signaling pathway in the systemic resistance induced in cucumber by *Trichoderma asperellum* T203. Phytopathology 95(1): 76-84
- 169. Zhang, MS Kim, V Krishnamachari, P Payton, Y Sun, et al. (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in *Arabidopsis*. Planta 226: 839-851.

- 170. Grady EN, J MacDonald, L Liu, A Richman, ZC Yuan (2016) Current knowledge and perspectives of *Paenibacillus*: a review. Microb Cell Fact 15(203).
- 171. S Harish, M Kavino, N Kumar, P Balasubramanian, R Samiyappan (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against banana Bunchy top virus. Biol Control 51(1): 16-25.
- 172. RF Guo, GF Yuan, QM Wang (2013) Effect of NaCl treatment on glucosinolate metabolism in broccoli sprouts. J Zhejiang Univ Sci B 14(2): 124-131.
- 173. A Kumar, H Verma, VK Singh, PP Singh, SK Singh, et al. (2017) Role of *Pseudomonas* sp. in sustainable agriculture and disease management. In: V Meena, P Mishra, J Bisht, A Pattanayak (Eds.), Agriculturally Important Microbes for Sustainable Agriculture, Springer, Singapore, pp. 195-215.
- 174. S Compant, B Reiter, A Sessitsch, J Nowak, C Clement, et al. (2005) Endophytic colonization of *Vitis vinifera* L. by plant growth-promoting

- bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4): 1685-1693.
- 175. J Frankowski, M Lorito, F Scala, R Schmidt, G Berg, et al. (2001) Purification and properties of two chitinolytic enzymes of *Serratia plymuthica* HRO-C48. Arch Microbiol 176(6): 421-426.
- 176. M Kamensky, M Ovadis, I Chet, L Chernin (2003) Soil-borne strain IC14 of *Serratia plymuthica* with multiple mechanisms of antifungal activity provides biocontrol of *Botrytis cinerea* and *Sclerotinia sclerotiorum* diseases. Soil Biol Biochem 35(2): 323-331.
- 177. Z Xu, R Zhang, D Wang, M Qiu, H Feng, et al. (2014) Enhanced control of cucumber wilt disease by *Bacillus amyloliquefaciens* SQR9 by altering the regulation of its DegU phosphorylation. Appl Environ Microbiol 80(9): 2941-2950.
- 178. A El-Rahman, HA Shaheen, A El-Aziz, M Rabab, DS Ibrahim (2019) Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root- knot nematode, *Meloidogyne incognita*. Egypt J Biol Pest Control 29(41): 1-11.

Your next submission with Juniper Publishers will reach you the below assets

- · Quality Editorial service
- Swift Peer Review
- · Reprints availability
- · E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats

(Pdf, E-pub, Full Text, Audio)

Unceasing customer service

Track the below URL for one-step submission https://juniperpublishers.com/online-submission.php