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Abstract

In 2025, the world’s population is expected to reach 10 billion, making food security a global concern. Improving agricultural production in 
response to changing climatic circumstances is crucial for maintaining global food security. Conventional farming operations commonly employ 
artificial/chemical fertilizers to increase crop output, but these have several detrimental environmental and human health consequences. 
Researchers have long focused on alternative crop fertilization methods, and biofertilizers are becoming increasingly common in agriculture 
worldwide. Biofertilizers, made from indigenous plant growth-promoting rhizobacteria, are a cost-effective and environmentally friendly way to 
enhance crop productivity. This article provides an overview of microbial inoculants as biofertilizers, covering their types, modes of action, crop 
productivity impacts, problems, and limitations. This article focuses on the use of biofertilizers in agriculture to promote plant growth through 
nitrogen fixation, phytohormone production, siderophore generation, nutrient solubilization, and easy uptake by crop plants. This review article 
discusses how microbial inoculants might improve agricultural productivity and their challenges and limitations. 
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Introduction 

Soil microorganisms are required for both effective nutrient 
control and soil biodiversity. They are necessary for plant 
development and growth. In recent years, chemical fertilizers 
have been employed in agriculture to increase food production 
and independence for the country, but at the expense of the 
environment and the health of all living beings. Overusing these 
fertilizers in farming is costly and has many negative consequences 
for soil fertility. Beneficial microorganisms offer alternatives to 
traditional farming approaches for addressing our agricultural 
needs. Biofertilizers are safer compared to chemical fertilizers, 
they are more concentrated have fewer negative environmental 
effects, and function better in smaller quantities. Furthermore, 
microbial inoculants degrade faster and are less likely to cause 
resistance to diseases and pests [1]. Because bioinoculants are 
ecologically friendly but exceptionally powerful and may be used 
as biopesticides without harming plant products, they have no 
adverse effects on soil-dwelling animals and plant life. The plant 
needs mineral nutrients, which can only be obtained through the 
direct or indirect application of chemical fertilizers in conjunction  

 
with organic manure and biofertilizers to boost the content of 
organic soil and ensure sustainability in fields and horticultural 
crops [2]. Organisms like bacteria, fungi, and other microbes are 
microbial inoculants that are introduced into an environment to 
achieve a specific aim, such as biocontrol or plant development 
[3]. The word “bio-fertilizer” refers to a wide range of products 
that contain active or dormant microorganisms such as bacteria, 
fungi, actinomycetes, and algae. Some bacteria secrete compounds 
that enhance plant growth, these bacteria help fix atmospheric 
nitrogen and solubilize or mobilize soil nutrients upon application 
[4]. In addition to numerous other products, biofertilizers, and 
biopesticides are now available as alternatives to standard 
synthetic pesticides, inorganic fertilizers, and inorganic fertilizers, 
respectively. From 2022 to 2027, the biofertilizer market is 
predicted to rise at a compound yearly 12.1% growth rate, from 
1.57 billion in 2018 [5]. The market is tremendously fragmented 
because of the vast number of small and large businesses operating 
in various  locations. Because it is now mostly unregulated, the 
biofertilizer market is dominated by numerous small businesses; 
however, if rules are enforced, as has occurred in the global market 
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for biopesticides, the market may become more concentrated [6]. 
Furthermore, because they occur naturally in the rhizosphere, 
are non-pathogenic, environmentally friendly, and directly 
increase plant yield, PGPRs are a distinct class of microbes that 
influence plant defense mechanisms and provide host resistance 
to further pathogen attack via an incredibly diverse mechanism. 
As a result, they are regarded as more effective biocontrol agents 
than traditional chemical fertilizers [7]. PGPRs can directly 
or indirectly influence plant development and stimulate the 
development of plant growth by releasing mineral nutrients into 
soils, controlling or inhibiting phytopathogens, producing various 
plant growth regulators, improving bioremediation and soil 
structure by separating toxic heavy metals, and reducing chemical 
compounds such as fungicides and pesticides [8-10]. In addition 
to the mentioned roles, PGPRs also contribute to various defense 
mechanisms in plants by synthesizing volatiles, biosurfactants, 
antibiotics, siderophores, and enzymes that degrade cell walls 
and raise systemic resistance (ISR). PGPRs comprise an extensive 
range of symbiotic and non-symbiotic bacterial species from the 
genera Azotobacter, Klebsiella, Azospirillum, Bacillus, Serratia, and 
Enterobacter [11]. Many researchers are continuously working 
to better understand the diversity, importance, and functions 

that biofertilizers play in improving agricultural sustainability. 
Plant age, species, soil conditions, growth phases, and soil types 
all influence the impacts of PGPRs [12]. Enhancing plant nutrient 
absorption is an important function of PGPR that is suitable 
for crop development [13,14]. PGPRs resist the loss of plant 
development caused by a variety of stresses [15], consisting of 
heavy metals stress [16], waterlogging stress [17], salt stress 
[18,19], drought stress [20], and other unfavorable environmental 
conditions. PGPR inoculation reduces plant stress, which improves 
growth, fitness, nutrient uptake, and production. PGPRs are thus 
necessary for continuous, advantageous agricultural reasons, 
such as increasing soil fertility and crop yields in tough conditions. 
In recent decades, PGPRs have been increasingly used for safe 
and secure agriculture around the world. The lack of superior 
bioinoculants is the biggest obstacle to farmer’s success. Azolla, 
Azotobacter, Acetobacter, Bacillus thuriengensis, Trichoderma, and 
Azospirillum must be carefully considered before being employed 
in grain and vegetable crops. These biofertilizers are used in 
conjunction with chemical fertilizers and organic manures to 
increase soil organic carbon content and ensure crop viability [2] 
(Figure 1). 

Figure 1: An illustration of the numerous microbial inoculants, or PGPRs, and their crucial role in crop promotion.

The goal of this paper is to provide an overview of the value 
of biofertilizers using microbial inoculants and how they improve 
crop output. This review offers an in-depth investigation of the 
Bio inoculants have both direct and indirect methods, including 
symbiotic and non-symbiotic biological nitrogen fixation, 

production of phytohormones, solubilization of nutrients 
(phosphate and potassium), production of siderophores, and 
biocontrol of phytopathogens, chitinases, HCN, and other 
antifungal properties, to boost crop yield.
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Action Mechanism of PGPR

PGPR: Direct mechanism 

Biological nitrogen fixation (BNF)

Nitrogen is the main nutrient for the growth of plants and 
is regarded as the fourth most important component of dry 
biomass in plants. It has an important function in membrane 
lipids, enzymes, structural proteins, and genetic material [21]. 
The majority of nitrogen seems to be unavailable to plants and 
animals in gaseous form. The application of nitrogen-fixing 

bacteria (PGPRs) to plant yield results in disease control, growth 
promotion, and nitrogen retention [22]. BNF is a technology that 
uses microbes such as actinomycetes, eubacteria, and blue-green 
algae to help convert atmospheric nitrogen into ammonia via a 
reduction cycle.

Each kind is converted by a unique process in various 
crops and is shown in Table 1 & 2. Naturally, biological nitrogen 
fixation—the method by which bacteria fix 70% of the nitrogen—
and physical and chemical processes fix another 30% of the 
nitrogen [2]. 

Table 1: Biological nitrogen fixation can be classified as either free-living or associative.

Free-living/Non-symbiotic/Symbiotic Crops Ref.

Azotobacter, Azospirillum Azospirilliun sp., Pseudomonas sp. Potato [33]

Herbaspirillum sp., Bacillus sp. Sugarcane [34]

Pasteurella multicida, K. pneumonia, K. oxycota Acetobacter    

Azospirillum brasilense Wheat [36]

Pseudomonas sp. P. mosselii   [37]

Stenotrophomonas maltophilia, Chryseobacterium   [38]

Pseudomonas sp, S. marcescens Rice [39]

Anabaena, Azolla K. pneumonia, B. subtilis, Microbacterium   [40]

Rhizobium sp. Beans, Peas, [41]

Bradyrhizobium Green gram (Vigna radiate) [26]

Rhizobium japonicum Soybean (Glycine max) [42]

Bradyrhizobium   [43]

B. subtilis, B. lichenoformis Chickpea [44]

P. agglomerans, B. cereus   [45]

Bacillus sp. Klebsiella sp. Maize [46]

B. majavensis, P. aeruginosa,   [47]

Bacillus, Pseudomonas sp. Sorghum and chilli [48]

Frankia Actinorhizal plants  

Table 2: Displays the amount of nitrogen fixed by various microbial inoculants. 

State Aerobic/ Anaerobic Bacteria Crop Amount of N2 fixed Kg/ha/year Ref.

Free-living

Aerobic

Azotobacter   10 to 20 [2]

Azotobacter Dryland Crops 20 -25 [4]

Anaerobic Clostridia   2 to 5  

Facultative Klebsiella   5 to 10  

Symbiotic

Legumes

Rhizobia   50-500 [2]

Rhizobium strain Groundnut, Soybean 50-200 [4]

Non-legumes

Azospirillium   5 to 20  

Acetobacter   150  

Anabaena Rice 600 [40,49]

Blue-Green Algae  

Anabaena   20 - 25 [2]

Azolla   70-100  

Azolla Rice 30-100 [4]
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Symbiotic nitrogen fixation (SNF)

The mutualistic association between bacteria and plants is 
known as symbiotic nitrogen fixation (SNF). Symbiotic nitrogen-
fixing bacteria may access all types of plants and fix atmospheric 
nitrogen in a symbiotic manner. When a plant starts producing 
iso-flavonoids and flavonoids in its rhizosphere, Rhizobium sees 
this as the start of a mutualistic relationship [23]. Rhizobium, 
Bradyrhizobium, Sinorhizobium, and Mesorhizobium are examples 
of bacteria that coexist with leguminous plants symbiotically, while 
Frankia coexists symbiotically with shrubs and non-leguminous 
plants [24]. Rhizobium is the most common symbiotic nitrogen-
fixing bacteria in legume crops. In addition to bacteria, certain 
small ferns act as symbiotic nitrogen fixers. As an example, the 
tiny, free-floating aquatic fern Azolla interacts with cyanobacteria 
(Anabaena) to fix nitrogen from the atmosphere. In exchange 
for fixed nitrogen, Azolla provides Anabaena with optimal 
circumstances, nutrition, and phytohormones. The nitrogen-
fixing phenomenon occurs in Anabaena’s heterocyst cells. Azolla 
mostly aids rice growing by incorporating biomass and nitrogen 
fertilizer into the soil. Actinorhizal plants can acquire root nodules 
from actinomycetes such as Frankia. Some genera, such as Myrica, 
Allocasuarina, Eleagnus, Coriaria, and Casuarina, can nodulate 
Frankia. These plants are monocots with an assurance future in 
agriculture and reclaimed land. Bacillus and Azotobacter species 
fix nitrogen, which stimulates the growth and development of 
forest crops and maize plants [25]. Bradyrhizobium japonicum 
inoculation enhanced soybean plant growth, and nitrogen fixation 
[26].

Free-living or nonsymbiotic nitrogen fixation 

Plants’ root zones include free-living nitrogen fixers, which 
feed on and absorb nutrients. Diazotrophs also help in non-
symbiotic nitrogen fixation by stimulating the growth of non-
leguminous plants like radish and rice. Enterobacter, Azotobacter, 
Burkholderia, Diazotrophicus, Pseudomonas, Gluconacetobacter, 
and Cyanobacteria (Nostoc, Anabaena) are examples of 
rhizopheric bacteria that do not fix nitrogen symbiotically [27,28]. 
Azotobacter chroococcum can fix 10mgN/g of carbon source in 
vitro, indicating that it can be employed as a biofertilizer [29]. 
A. brasilense decreases N fertilization, improves plant nutrition, 
increases plant biomass, and boosts wheat grain output [30]. 
Acetobacter, Herbaspirillum, Diazotrophicus, and Azospirillum, are 
nitrogen-fixing bacteria that thrive with C4 plants such as bajra, 
maize, sorghum, sugarcane, and cereals including rice, barley, and 
wheat [31]. Azospirillum inoculation yielded notable outcomes 
in sorghum, wheat, maize, and other grass seedlings. The total 
nitrogen requirement of rice and corn is about 25% which 
is contributed by bacteria [32].

Production of Siderophores 

Antibiosis is carried out by small organic molecules known 
as siderophores, which provide crops with iron (Fe), depriving 

pathogens of iron [50]. One of the important mineral elements 
is iron for the  growth and development of plants and it serves 
as a cofactor for proteins involved in metabolic activities such 
as respiration and photosynthesis [51]. Iron deficiency reduces 
pathogen growth by blocking essential activities such as 
sporulation and nucleic acid synthesis [52]. Pseudomonas putida 
can increase the quantity of iron in the natural environment 
by utilizing heterologous siderophores produced by other 
microbes available in the root zone [53]. Using Bacillus sp. that 
produces siderophores stimulates groundnut plant growth [54]. 
Pseudomonas koreensis prevented the spread of plant diseases by 
generating siderophores and antioxidant enzymes in maize plants 
[55]. Siderophores are believed to be plant growth promoters 
and biocontrol agents for fungal diseases associated with other 
crops [56]. To clarify the significance of Pseudomonas strain 
B324 which produces siderophores in fighting Pythium, the 
pathogen that causes wheat root rot disease, is therefore critical 
[57]. Table 3 shows some examples of siderophore-producing 
bacteria associated with various plants. Pseudomonas produces 
a new similar siderophore called pyroverdine [58]. Mutant 
Pseudomonas strains produced less pyoverdine and suppressed 
the fungal pathogen less than their original strains did [59]. As 
a result, it has been proven that the synthesis of siderophores 
is an important biological regulatory mechanism. When plants 
exposed to additional metals such as nickel and cadmium, the 
ferric siderophore complex is important for iron absorption [60]. 
PGPRs are valuable assets because they create siderophores that 
feed plants with the necessary quantity of iron. However, further 
research is required to discover whether PGPRs can create 
siderophores. Bacteria also reduce phytopathogens by producing 
siderophores. The majority of the iron in the rhizosphere is held 
together by siderophores, which act as iron chelators. Researchers 
have concentrated on creating microbial inoculants to protect 
plants from pathogen-caused illnesses.

Solubilization of nutrient

Potassium solubilization

Potassium (K) is the 3rd most significant macronutrient 
for plants. Insoluble rock made mostly of silicate minerals 
has greater than 90% potassium. It plays a role in protein 
synthesis, food intake, regulating opening and closing of stomata, 
enhancing product quality, and providing adaptability to harsh 
environmental conditions [61]. It is required for enzyme 
activation, protein biosynthesis, and photosynthesis. Lack of 
potassium concentration causes several major problems for plants 
throughout development, including slow growth, bare roots, and 
reduced yield and seed production [62]. To maintain crop output, 
potassium prominence, and plant absorption in the soil should be 
preserved [63]. The solubilization of potassium rock by PGPRs via 
the formation and release of organic acids has been extensively 
researched [64-66]. PGPRs, such as Paenibacillus sp., B. edaphicus, 
and Ferrooxidans sp., can easily detect potassium levels in soil by 
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solubilizing and releasing potassium components from potassium-
containing minerals [67]. Using potassium-solubilizing PGPRs 
to  increase agricultural nutrients can reduce the application of 
synthetic fertilizers while promoting sustainable agricultural 
output [68,69]. Biofertilizers as items containing dormant spores 
and live microbes or the inoculum they carry that benefit plants, 
particularly the soil, seed, and root [70]. Potassium solubilizing 
bacteria to plant seeds typically resulted in a significant 
improvement in seedling vigor, productivity, potassium uptake, 
and plant growth [64,71]. The formation of organic acids directly 
enhances K dissolution via indirect or ligand-mediated mechanism 

by creating a compound in solution with reaction products. This 
is the way KSB distributes potassium to plants. Using Potassium 
solubilizing bacteria as a biofertilizer can contribute to enhancing 
environmentally sustainable agricultural output by reducing the 
need for chemical fertilizers while enhancing plant growth and 
yield [72]. These technologies are increasingly indispensable in 
today’s agricultural operations. Biofertilizers will make a stronger 
argument in the upcoming years as farming techniques change 
and environmental dangers added with chemical fertilizers 
become more apparent. 

Table 3: Some examples of rhizobacteria that solubilize potassium and improve K absorption in various crops.

Function Plant - Growth Promoting Rhizobacteria (PGPR) Crops Ref.

Phosphate solubilization

Bacillus sp., Pseudomonas sp., Serratia sp. Solanum tuberosum [90]

Azospirillum, P. putida, Triticum aestivum L. [91]

Stenotrophomonas maltophilia, chryseobacterium   [38]

Bacillus sp., Klebsiella sp., Pseudomonas sp. Cicer arietinum [92]

Herbaspirillum sp., Bacillus sp. Vigna unguiculata [34]

B. safensis, B. simplex, Lysinibacillus fusiformis, B. pumilus Glycine max [93]

S. marcescens, Pseudomonas sp. Oryza sativa [94]

P. brassicacerum, Acinetovacter calcoaceticus, P. marginalis Solanum lycopersicum [95]

Phosphate solubilization

Pseudomonas sp., Acinetovacter sp., Bacillus sp. Phaseolus vulgaris [96]

B. subtilis, K. oxycota Zea mays [97]

Rhizobium sp. Vica faba [98]

Bacillus, Pseudomonas sp. Sorghum bicolr [48]

B. circulans Citrus sinensis [99]

Pseudomonas sp., Rhizobium, Mesorhizobium, Bacillus, Azotobacter 
sp. 

Leguminous and non-leguminous 
plant [100]

Siderophore production

Bacillus sp. KB129, KB133 Sorghum bicolr [101]

V. paradox RAA3 Triticum aestivum L. [102]

Azotobacter sp. Az63, Az69 and Az70 Zea mays [103]

Rhizobacteria sp. pulses [104]

Bacillus amyloliquefaciens ROH14 pepper [105]

Bacillus amyloliquefaciens FZB42 Arabidosis [106]

Phosphate Solubilization

Phosphorus [73] is the 2nd most important element for plants, 
and it can be absorbed only in monobasic ions or dibasic ions 
[53,74]. Plants cannot absorb 95-99% of the P in the soil because 
it is frozen, insoluble, or precipitated. As a result, crops can only 
consume a tiny percentage of total soil P, and rarely enough [75,76]. 
It has been proven that a wide spectrum of microorganisms 
contributes to the biogeochemical cycling of Phosphate in the 
rhizospheric zone. As a result, inoculants based on Phosphate 
solubilizing microorganisms (PSM) are expected to become 
popular in the commercial market soon [77,78]. Researchers are 
interested in employing a variety of PGPRs as plant inoculants due 

to their capacity to solubilize Phosphate [53,79]. These species 
are commonly mentioned as possible P biofertilizers since many 
agricultural soils have an intrinsic P shortage [37]. Heterotrophic 
bacteria known as PSBs were chosen because of their ability to 
release organic ions with a low molecular weight that acidify 
the medium, consequently, phosphate compounds that are only 
slightly soluble in produced media are dissolved [80]. Although 
PSB produces many enzymes that aid in phosphate solubilization, 
acidification is frequently used to accelerate this process 
[39,78]. PSB strains from many taxa, including Pseudomonas, 
Burkholderia, and Bacillus, have been isolated [81]. A recent 
study discovered a positive association between Pseudomonas 
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sp. Phosphate solubilizing capabilities and organic acid synthesis 
[82]. Bacillus subtilis protects plants from environmental stress 
and promotes safflower development [83]. NanoPhos was used in 
field circumstances to increase the population of bacteria and soil 
enzymes resulting in higher maize production [84]. Xanthomonas, 
Chryseobacterium [88], Pantoea, Klebsiella, Enterobacter [87], 
Pseodomonas sp. [89], and 18 microbial inoculants as biofertilizers. 
Azotobacter [85], Bacillus, Rhodococcus, Serratia, Arthrobacter, 
Gordonia, Delftia Phyllobacterium, sp. [86], Pantoea, Klebsiella, 
Enterobacter [87], Xanthomonas, Chryseobacterium [88], and 
Pseudomonas sp. [89].

Phytohormone production 

Phytohormones, produced by plants and microorganisms both, 
have a profound impact on plant growth and development [107]. 
Plant hormone production refers to the positive phenomenon in 
which beneficial microorganisms produce ethylene, abscisic acid, 
gibberellins, cytokinin, and indole-3-acetic acid. Microbes create 
and transport plant hormones, which are organic compounds 
capable of causing morphological, physiological, and biochemical 
effects in plants at extremely low concentrations. These hormones 
function as signaling molecules, promoting nodulation, increasing 
nutrient intake, and stimulating root growth [108]. The five main 
groups of plant hormones are auxin, gibberellins, cytokinins, 
abscisic acid, and 1-aminocyclopropane-1-carboxylase (ACC). 
Polyamines and brassinosteroids are also produced in the tissues 
of growing plants. Plants naturally create phytohormones. 
Numerous articles have confirmed soil microbes’ ability to 
produce phytohormones, which stimulate plant growth and 
development [109]. 

Auxin production

Auxins naturally produce growth hormones. Auxins appear 
in a variety of forms, but the most frequent one that generates 
spontaneously is indole-3-acetic acid. participating in regulating 
plant development. IAA stimulated the growth of lateral roots, 
apical dominance, cell elongation, differentiation, blooming, fruit 
set, and ripening [110,111]. Plants use oxidative deamination 
or decarboxylation processes to convert tryptophan into IAA 
[112]. Bacillus, Klebsiella, Pseudomonas, Rhizobium, Enterobacter, 
Bradyrhizobium, Agrobacterium, and Indole-3-pyruvic acid, 
for example, can synthesize phytohormones via the indole-3-
acetamide and indole-3-acetic acid aldehyde pathways [113-
115]. Cylindrospermum, Nostoc, Anabeana, Gloeothece, Calothrix, 
Gloeothece, Plectonema, Chlorogloeopsis, and Gloeothece have all 
been proven to produce IAA. 

Gibberellins production

Tetracyclic diterpenoid compounds that is Gibberellins, 
have a role in a variety of plant physiological and developmental 
processes [116]. More than 136 gibberellins are widely distributed 
in nature [117], with GA3 being the most regularly used and GA1 
being the most active. Geranyl diphosphate can be turned into 

gibberellins by a variety of methods. GAs activates maximum 
biological activity, such as fruit growth and floral induction in 
plants, stem elongation, production of amylolytic enzymes, and 
seed germination by breaking seed dormancy [118]. Gibberellin 
synthesis is required for stem growth; low or non-existent 
gibberellin levels lead plants to grow to a minimum height. 
Gibberellins are produced by the fungus Gibberella fujikuroi 
as well as the plants themselves. Nonetheless, several studies 
have shown that PGPRs, such as Xanthomonas, Pseudomonas, 
Agrobacterium, Micrococcus, Rhizobium Bacillus, Azospirillum, and 
Clostridium, produce gibberellins [119-122]. 

Cytokinin production

Adenine derivatives known as cytokinins regulate 
cytokinesis in plant tissues [123]. A variety of bacteria, primarily 
streptomycetes and Azospirillum, Bacillus, Pseudomonas putida, 
Pseudomonas fluorescens, and Bradyrhizobium have been shown to 
produce cytokinin, primarily zeatin [122,124-126]. Plant cytokines 
increase cell proliferation, root hair growth, and  elongation 
inhibit lateral root, and control root meristem differentiation 
[127]. Furthermore, cytokinins have a role in influencing plants, 
delaying leaf aging, and boosting mitotic cell division in shoots 
and roots [128]. Bacterial inoculation that produces cytokinin 
promotes plant shoot growth while decreasing the root-to-shoot 
ratio [129]. A. chroococcum, a cytokinin-producing bacterium, was 
introduced into a maize plant to enhance growth conditions [130]. 

Abscisic acid (ABA) production

Abscisic acid (ABA), often known as the stress hormone, 
is primarily involved in plant development and response to 
environmental stresses such as high salt, temperature, and drought 
[131]. ABA production enhances water tolerance and drought in 
plants. Bacteria like A. brasilense may increase the amount of ABA 
generated by plants during water stress and drought by closing 
stomata and thereby lowering water loss [132]. Furthermore, this 
causes the formation of lateral roots.

Aminocyclopropane-1- carboxylate (ACC) deaminase 
production

At very low quantities, ethylene is an important growth 
hormone that controls plant growth and development [133]. 
It is also known as a stress hormone because it is produced in 
both biotic and abiotic stress conditions [28]. At lower doses, it 
promotes plant growth, but at higher concentrations, it has been 
demonstrated to be harmful. Ethylene promotes senescence, fruit 
ripening, and the abscission of numerous plant components by 
inhibiting auxin transport and stopping root extension [134,135]. 
Certain PGPRs, such as Rhizobium, Enterobacter, Azospirillum 
brasilense, Pseudomonas, Achromobacter, Agrobacterium, 
Azospirillum, Alcaligenes, Serratia, Ralstonia, Burkholderia 
spp., and others, create ACC directly as a precursor to ethylene. 
These PGPRs can break down ACC while also promoting plant 
development by reducing ethylene levels and increasing plant 
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tolerance to harsh conditions [136-138]. Microbes depend upon 
ACC deaminase hydrolysis to obtain ammonia and α-ketobutyrate, 
both of which are carbon and nitrogen sources for their growth 

[139]. Microorganisms that exhibit ACC deaminase activity are 
expected to have higher growth and productivity, making them 
potential sources of biofertilizers [140] (Table 4).

Table 4: Lists the many types of phytohormones that PGPRs create in a variety of crops.

PGPR Phytohormones Plant Ref.

Achromobacter xylosoxidans, Enterobacter cloacae ACC deminase, IAA Maize [143]

25 Acinetobacter sp. ALEB16 Abscisic acid Atractylodes lancea [150]

Azospirillum sp. Cytokinin production Mimosa pudica [147]

Bacillus Cytokinin production Cucumber [148]

Bacillus Gibberellin production Pepper [153]

Bacillus amyloliquefaciens QST713 IAA, EPS Alfalfa (Medicago sativa L.) [146]

Bacillus circulans ACC deminase Mustard [142]

Bacillus sp. Gibberellin production Alder [151]

Bacillus sp. ACC deminase, IAA, EPS Rice [144]

Bacillus subtilis IAA Edible tubercle [114]

Herbaspirillum seropediacae IAA Ocimum sanctum [17]

Pseudomonas BA-8 Cytokinin production Strawberry [149]

Pseudomonas putida ACC deminase Tomato [141]

Pseudomonas putida IAA Canola [145]

Sphingomonas Gibberellin production Tomato [152]

PGPR: Indirect mechanism 

ISR: Induced system resistance 

Plants have a wide range of active defensive mechanisms that 
are activated in response to plant diseases. These diseases affect 
plant health and pose a long-term risk to ecosystem sustainability 
and food production. Plants have an ISR, which protects them 
from many diseases and biotic stressors [154]. ISR in plants is 
mostly induced by Pseudomonas sp. via pathways regulated by 
jasmonic acid and ethylene [155-158]. P. fluorescence was found to 
significantly reduce the pathogenicity of phytopathogens such as 
viruses, fungi, and bacteria while also inducing self-response (ISR) 
in a variety of plants, including tobacco, radish, and Arabidopsis, 
via jasmonic acid/ethylene (JA/ET) signaling pathways [159]. 
According to reports, a different type of plant hormones has been 
demonstrated to facilitate ISR induction by producing elicitors, 
which are microorganism-derived compounds [160,161]. Cell 
wall constituents such as chitin, flagellin, lipopolysaccharides, 
and others are examples of microbial elicitors [162], volatile 
organic compounds (VOC) such as alcohols, phenolic compounds, 
terpenoids, sulfides, and ketones [161], and metabolites such as 
antibiotics and siderophores [163]. These elicitors work together 
to regulate plant diseases and trigger the immune system response 
(ISR) to a variety of pathogens. Occasionally, elicitors generate ISR 
by interfering with phytohormones required for the plant signaling 
system, triggering the defense response [164]. Other Bacillus 
species, including B. pumilus, B. amyloliquefaciens, B. subtilis, B. 

cereus, and B. mycoides, as well as Pseudomonas isolates, have 
also been shown to produce resistance to a variety of disorders 
[165]. Dimethyl disulfide (DMDS) produced by B. cereus has been 
shown to activate immunological responses (ISRs) in a variety 
of pathogenic fungi [166]. Inoculating arabidopsis plants with P. 
simiae leads them to produce the phenolic compound coumarin 
scopoletin, which acts as an elicitor to reduce soil-borne illnesses 
[167]. Furthermore, it has been demonstrated that PGPRs may 
change the physiology and morphology of plant roots in response 
to pathogen invasion by secreting phytohormones such as auxin, 
JA, NO, and cytokinins that protect the plant from infection [168-
170]. Microbes can boost plant ISR by many processes, such as 
producing chitinase, β-1,3-glucanase, phenylalanine ammonia-
lyase, peroxidases [171]. 

Biocontrol of Phytopathogen 

Disease development and Pathogen attacks are the leading 
causes of diminishing crop yield and food product contamination 
in agricultural plants. Several chemical components, such as 
insecticides, are used to protect agricultural yield against disease 
[172]. On the other side, prolonged usage of these pesticides has 
increased disease resistance and jeopardized the ecology. Thus, 
biological control is intended to tackle the pathogen onslaught 
instead of insecticides. Because of their enormous impact on plant 
health and ability to suppress diseases and illnesses, rhizobacteria 
are used as biofertilizers, promote plant development, and may 
operate as phytopathogen biological agents. Disease assaults 
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are prevented by a range of strategies that use non-toxic and 
ecologically friendly microorganisms in crop fields. PGPRs from the 
following genera can function as biocontrol agents: Enterobacter, 
Beijerinckia, Derxia, Bacillus, Gluconacetobacter, Rhodococcus, 
Klebsiella, Acinetobacter, Azotobacter, Azoarcus, Pseudomonas, and 
Azospirillum, and others [173]. Antibiotic production is the most 
generally recognized technique by which PGPRs resist infections’ 
damaging effects on plants. Antibiotics derived from Streptomyces, 
Stenotrophomonas, Bacillus, Pseudomonas, and such as amphisin, 
pyrrolnitrin, hydrogen cyanide (HCN), tropolone, kanosamine, 
and others, have antifungal, antibacterial, and antiviral properties 
and protect plants from diseases and foreign pathogens [174]. 

Chitinase 

PGPRs also suppress phytopathogens by enzymatic synthesis. 
PGPRs, such as S. marcescens, P. stutzeri, Paenibacillus sp., and S. 
plymuthica, produce enzymes such chitinase, lipase, protease, and 

others that hydrolyze fungal pathogens’ chitin, cellulose, proteins, 
and hemicellulose [175,176]. 

Hydrogen cyanide (HCN) 

Hydrogen cyanide, released by microorganisms such as 
Rhizobium, Pseudomonas, Bacillus, and kills pathogens and 
protects plants from illnesses [177]. According to El-Rahman et 
al. [178], Rhizobacteria create hydrogen chloride (HCN), which 
inhibits the growth of Meloidogyne incognita and Agrobacterium 
tumefacience. Thus, phytohormone-producing bacteria (PGPRs) 
are critical microorganisms with a major impact on crop 
improvement and plant growth development. They provide a 
variety of tasks, including phytohormone generation, nitrogen 
fixation, potassium and phosphate solubilization, phytohormone 
management, siderophore production, and increased soil 
structure (Figure 2). 

Figure 2: Previously documented significant contribution of microbial inoculants to increased crop production and productivity.

Conclusion 

While Chemical fertilizers and insecticides are beneficial 
for disease management and crop production, their continued 
use is hazardous to human health, the soil environment, and 
plant life. Using beneficial bacteria as biocontrol agents and 
biofertilizers is a low-cost and environmentally benign answer 

to the challenge of sustainable agriculture. Biofertilizers may 
replace chemical fertilizers and pesticides while increasing crop 
output, hence their usage in agriculture should be encouraged. 
Farmers should be educated on the advantages of employing 
PGPRs as biofertilizers, with an emphasis on commercialization. 
Consequently, we finalized that PGPRs are extremely beneficial to 

http://dx.doi.org/10.19080/IJESNR.2024.34.556390


How to cite this article: Salman K, Avinash Pratap S. Microbial Inoculants: Effective Biofertilizers for Improving Crop Productivity. Int J Environ Sci Nat 
Res. 2024; 34(3): 556390. DOI:  10.19080/IJESNR.2024.34.55639009

International Journal of Environmental Sciences & Natural Resources

agriculture and that employing biofertilizers in agricultural fields 
is the superior substitute to chemical fertilizers, which negatively 
impact fauna, flora, and soil health. Microbial inoculants have a 
bright future as biofertilizers since they provide various benefits 
over typical chemical fertilizers. Growing knowledge of the 
harmful environmental effects of conventional farming systems 
has necessitated the adoption of more sustainable agricultural 
practices. Furthermore, by reducing dependency on chemical 
fertilizers and improving soil health, microbial inoculants as 
biofertilizers can promote sustainable agriculture.
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