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Abstract

In 2025, the world’s population is expected to reach 10 billion, making food security a global concern. Improving agricultural production in
response to changing climatic circumstances is crucial for maintaining global food security. Conventional farming operations commonly employ
artificial /chemical fertilizers to increase crop output, but these have several detrimental environmental and human health consequences.
Researchers have long focused on alternative crop fertilization methods, and biofertilizers are becoming increasingly common in agriculture
worldwide. Biofertilizers, made from indigenous plant growth-promoting rhizobacteria, are a cost-effective and environmentally friendly way to
enhance crop productivity. This article provides an overview of microbial inoculants as biofertilizers, covering their types, modes of action, crop
productivity impacts, problems, and limitations. This article focuses on the use of biofertilizers in agriculture to promote plant growth through
nitrogen fixation, phytohormone production, siderophore generation, nutrient solubilization, and easy uptake by crop plants. This review article
discusses how microbial inoculants might improve agricultural productivity and their challenges and limitations.
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Introduction

Soil microorganisms are required for both effective nutrient
control and soil biodiversity. They are necessary for plant
development and growth. In recent years, chemical fertilizers
have been employed in agriculture to increase food production
and independence for the country, but at the expense of the
environment and the health of all living beings. Overusing these
fertilizers in farming is costly and has many negative consequences
for soil fertility. Beneficial microorganisms offer alternatives to
traditional farming approaches for addressing our agricultural
needs. Biofertilizers are safer compared to chemical fertilizers,
they are more concentrated have fewer negative environmental
effects, and function better in smaller quantities. Furthermore,
microbial inoculants degrade faster and are less likely to cause
resistance to diseases and pests [1]. Because bioinoculants are
ecologically friendly but exceptionally powerful and may be used
as biopesticides without harming plant products, they have no
adverse effects on soil-dwelling animals and plant life. The plant
needs mineral nutrients, which can only be obtained through the
direct or indirect application of chemical fertilizers in conjunction

with organic manure and biofertilizers to boost the content of
organic soil and ensure sustainability in fields and horticultural
crops [2]. Organisms like bacteria, fungi, and other microbes are
microbial inoculants that are introduced into an environment to
achieve a specific aim, such as biocontrol or plant development
[3]- The word “bio-fertilizer” refers to a wide range of products
that contain active or dormant microorganisms such as bacteria,
fungi, actinomycetes, and algae. Some bacteria secrete compounds
that enhance plant growth, these bacteria help fix atmospheric
nitrogen and solubilize or mobilize soil nutrients upon application
[4]. In addition to numerous other products, biofertilizers, and
biopesticides are now available as alternatives to standard
synthetic pesticides, inorganic fertilizers, and inorganic fertilizers,
respectively. From 2022 to 2027, the biofertilizer market is
predicted to rise at a compound yearly 12.1% growth rate, from
1.57 billion in 2018 [5]. The market is tremendously fragmented
because of the vast number of small and large businesses operating
in various locations. Because it is now mostly unregulated, the
biofertilizer market is dominated by numerous small businesses;
however, if rules are enforced, as has occurred in the global market
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for biopesticides, the market may become more concentrated [6].
Furthermore, because they occur naturally in the rhizosphere,
are non-pathogenic, environmentally friendly, and directly
increase plant yield, PGPRs are a distinct class of microbes that
influence plant defense mechanisms and provide host resistance
to further pathogen attack via an incredibly diverse mechanism.
As a result, they are regarded as more effective biocontrol agents
than traditional chemical fertilizers [7]. PGPRs can directly
or indirectly influence plant development and stimulate the
development of plant growth by releasing mineral nutrients into
soils, controlling or inhibiting phytopathogens, producing various
plant growth regulators, improving bioremediation and soil
structure by separating toxic heavy metals, and reducing chemical
compounds such as fungicides and pesticides [8-10]. In addition
to the mentioned roles, PGPRs also contribute to various defense
mechanisms in plants by synthesizing volatiles, biosurfactants,
antibiotics, siderophores, and enzymes that degrade cell walls
and raise systemic resistance (ISR). PGPRs comprise an extensive
range of symbiotic and non-symbiotic bacterial species from the
genera Azotobacter, Klebsiella, Azospirillum, Bacillus, Serratia, and
Enterobacter [11]. Many researchers are continuously working
to better understand the diversity, importance, and functions

that biofertilizers play in improving agricultural sustainability.
Plant age, species, soil conditions, growth phases, and soil types
all influence the impacts of PGPRs [12]. Enhancing plant nutrient
absorption is an important function of PGPR that is suitable
for crop development [13,14]. PGPRs resist the loss of plant
development caused by a variety of stresses [15], consisting of
heavy metals stress [16], waterlogging stress [17], salt stress
[18,19], drought stress [20], and other unfavorable environmental
conditions. PGPR inoculation reduces plant stress, which improves
growth, fitness, nutrient uptake, and production. PGPRs are thus
necessary for continuous, advantageous agricultural reasons,
such as increasing soil fertility and crop yields in tough conditions.
In recent decades, PGPRs have been increasingly used for safe
and secure agriculture around the world. The lack of superior
bioinoculants is the biggest obstacle to farmer’s success. Azolla,
Azotobacter, Acetobacter, Bacillus thuriengensis, Trichoderma, and
Azospirillum must be carefully considered before being employed
in grain and vegetable crops. These biofertilizers are used in
conjunction with chemical fertilizers and organic manures to
increase soil organic carbon content and ensure crop viability [2]
(Figure 1).
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Figure 1: An illustration of the numerous microbial inoculants, or PGPRs, and their crucial role in crop promotion.

The goal of this paper is to provide an overview of the value
of biofertilizers using microbial inoculants and how they improve
crop output. This review offers an in-depth investigation of the
Bio inoculants have both direct and indirect methods, including
symbiotic and non-symbiotic biological nitrogen fixation,
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production of phytohormones, solubilization of nutrients
(phosphate and potassium), production of siderophores, and
biocontrol of phytopathogens, chitinases, HCN, and other
antifungal properties, to boost crop yield.
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Action Mechanism of PGPR
PGPR: Direct mechanism
Biological nitrogen fixation (BNF)

Nitrogen is the main nutrient for the growth of plants and
is regarded as the fourth most important component of dry
biomass in plants. It has an important function in membrane
lipids, enzymes, structural proteins, and genetic material [21].
The majority of nitrogen seems to be unavailable to plants and
animals in gaseous form. The application of nitrogen-fixing

bacteria (PGPRs) to plant yield results in disease control, growth
promotion, and nitrogen retention [22]. BNF is a technology that
uses microbes such as actinomycetes, eubacteria, and blue-green
algae to help convert atmospheric nitrogen into ammonia via a
reduction cycle.

Each kind is converted by a unique process in various
crops and is shown in Table 1 & 2. Naturally, biological nitrogen
fixation—the method by which bacteria fix 70% of the nitrogen—
and physical and chemical processes fix another 30% of the
nitrogen [2].

Table 1: Biological nitrogen fixation can be classified as either free-living or associative.

Free-living/Non-symbiotic/Symbiotic Crops Ref.
Azotobacter, Azospirillum Azospirilliun sp., Pseudomonas sp. Potato [33]
Herbaspirillum sp., Bacillus sp. Sugarcane [34]
Pasteurella multicida, K. pneumonia, K. oxycota Acetobacter
Azospirillum brasilense Wheat [36]
Pseudomonas sp. P. mosselii [37]
Stenotrophomonas maltophilia, Chryseobacterium [38]
Pseudomonas sp, S. marcescens Rice [39]
Anabaena, Azolla K. pneumonia, B. subtilis, Microbacterium [40]
Rhizobium sp. Beans, Peas, [41]
Bradyrhizobium Green gram (Vigna radiate) [26]
Rhizobium japonicum Soybean (Glycine max) [42]
Bradyrhizobium [43]
B. subtilis, B. lichenoformis Chickpea [44]
P. agglomerans, B. cereus [45]
Bacillus sp. Klebsiella sp. Maize [46]
B. majavensis, P. aeruginosa, [47]
Bacillus, Pseudomonas sp. Sorghum and chilli [48]
Frankia Actinorhizal plants
Table 2: Displays the amount of nitrogen fixed by various microbial inoculants.
State Aerobic/ Anaerobic Bacteria Crop Amount of N, fixed Kg/ha/year Ref.
Azotobacter 10to 20 2]
Aerobic Azotobacter Dryland Crops 20-25 [4]
Anaerobic Clostridia 2to5
Free-living Facultative Klebsiella 5to 10
Rhizobia 50-500 [2]
Legumes Rhizobium strain Groundnut, Soybean 50-200 [4]
Azospirillium 5to 20
Acetobacter 150
Symbiotic Non-legumes Anabaena Rice 600 [40,49]
Anabaena 20-25 2]
Azolla 70-100
Blue-Green Algae Azolla Rice 30-100 [4]
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Symbiotic nitrogen fixation (SNF)

The mutualistic association between bacteria and plants is
known as symbiotic nitrogen fixation (SNF). Symbiotic nitrogen-
fixing bacteria may access all types of plants and fix atmospheric
nitrogen in a symbiotic manner. When a plant starts producing
iso-flavonoids and flavonoids in its rhizosphere, Rhizobium sees
this as the start of a mutualistic relationship [23]. Rhizobium,
Bradyrhizobium, Sinorhizobium, and Mesorhizobium are examples
ofbacteria that coexist with leguminous plants symbiotically, while
Frankia coexists symbiotically with shrubs and non-leguminous
plants [24]. Rhizobium is the most common symbiotic nitrogen-
fixing bacteria in legume crops. In addition to bacteria, certain
small ferns act as symbiotic nitrogen fixers. As an example, the
tiny, free-floating aquatic fern Azolla interacts with cyanobacteria
(Anabaena) to fix nitrogen from the atmosphere. In exchange
for fixed nitrogen, Azolla provides Anabaena with optimal
circumstances, nutrition, and phytohormones. The nitrogen-
fixing phenomenon occurs in Anabaena’s heterocyst cells. Azolla
mostly aids rice growing by incorporating biomass and nitrogen
fertilizer into the soil. Actinorhizal plants can acquire root nodules
from actinomycetes such as Frankia. Some genera, such as Myrica,
Allocasuarina, Eleagnus, Coriaria, and Casuarina, can nodulate
Frankia. These plants are monocots with an assurance future in
agriculture and reclaimed land. Bacillus and Azotobacter species
fix nitrogen, which stimulates the growth and development of
forest crops and maize plants [25]. Bradyrhizobium japonicum
inoculation enhanced soybean plant growth, and nitrogen fixation
[26].

Free-living or nonsymbiotic nitrogen fixation

Plants’ root zones include free-living nitrogen fixers, which
feed on and absorb nutrients. Diazotrophs also help in non-
symbiotic nitrogen fixation by stimulating the growth of non-
leguminous plants like radish and rice. Enterobacter, Azotobacter,
Burkholderia, Diazotrophicus, Pseudomonas, Gluconacetobacter,
and Cyanobacteria (Nostoc, Anabaena) are examples of
rhizopheric bacteria that do not fix nitrogen symbiotically [27,28].
Azotobacter chroococcum can fix 10mgN/g of carbon source in
vitro, indicating that it can be employed as a biofertilizer [29].
A. brasilense decreases N fertilization, improves plant nutrition,
increases plant biomass, and boosts wheat grain output [30].
Acetobacter, Herbaspirillum, Diazotrophicus, and Azospirillum, are
nitrogen-fixing bacteria that thrive with C4 plants such as bajra,
maize, sorghum, sugarcane, and cereals including rice, barley, and
wheat [31]. Azospirillum inoculation yielded notable outcomes
in sorghum, wheat, maize, and other grass seedlings. The total
nitrogen requirement of rice and corn is about 25% which
is contributed by bacteria [32].

Production of Siderophores

Antibiosis is carried out by small organic molecules known
as siderophores, which provide crops with iron (Fe), depriving
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pathogens of iron [50]. One of the important mineral elements
is iron for the growth and development of plants and it serves
as a cofactor for proteins involved in metabolic activities such
as respiration and photosynthesis [51]. Iron deficiency reduces
pathogen growth by blocking essential activities such as
sporulation and nucleic acid synthesis [52]. Pseudomonas putida
can increase the quantity of iron in the natural environment
by utilizing heterologous siderophores produced by other
microbes available in the root zone [53]. Using Bacillus sp. that
produces siderophores stimulates groundnut plant growth [54].
Pseudomonas koreensis prevented the spread of plant diseases by
generating siderophores and antioxidant enzymes in maize plants
[55]. Siderophores are believed to be plant growth promoters
and biocontrol agents for fungal diseases associated with other
crops [56]. To clarify the significance of Pseudomonas strain
B324 which produces siderophores in fighting Pythium, the
pathogen that causes wheat root rot disease, is therefore critical
[57]. Table 3 shows some examples of siderophore-producing
bacteria associated with various plants. Pseudomonas produces
a new similar siderophore called pyroverdine [58]. Mutant
Pseudomonas strains produced less pyoverdine and suppressed
the fungal pathogen less than their original strains did [59]. As
a result, it has been proven that the synthesis of siderophores
is an important biological regulatory mechanism. When plants
exposed to additional metals such as nickel and cadmium, the
ferric siderophore complex is important for iron absorption [60].
PGPRs are valuable assets because they create siderophores that
feed plants with the necessary quantity of iron. However, further
research is required to discover whether PGPRs can create
siderophores. Bacteria also reduce phytopathogens by producing
siderophores. The majority of the iron in the rhizosphere is held
together by siderophores, which act as iron chelators. Researchers
have concentrated on creating microbial inoculants to protect
plants from pathogen-caused illnesses.

Solubilization of nutrient
Potassium solubilization

Potassium (K) is the 3™ most significant macronutrient
for plants. Insoluble rock made mostly of silicate minerals
has greater than 90% potassium. It plays a role in protein
synthesis, food intake, regulating opening and closing of stomata,
enhancing product quality, and providing adaptability to harsh
environmental conditions [61]. It is required for enzyme
activation, protein biosynthesis, and photosynthesis. Lack of
potassium concentration causes several major problems for plants
throughout development, including slow growth, bare roots, and
reduced yield and seed production [62]. To maintain crop output,
potassium prominence, and plant absorption in the soil should be
preserved [63]. The solubilization of potassium rock by PGPRs via
the formation and release of organic acids has been extensively
researched [64-66]. PGPRs, such as Paenibacillus sp., B. edaphicus,
and Ferrooxidans sp., can easily detect potassium levels in soil by
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solubilizing and releasing potassium components from potassium-
containing minerals [67]. Using potassium-solubilizing PGPRs
to increase agricultural nutrients can reduce the application of
synthetic fertilizers while promoting sustainable agricultural
output [68,69]. Biofertilizers as items containing dormant spores
and live microbes or the inoculum they carry that benefit plants,
particularly the soil, seed, and root [70]. Potassium solubilizing
bacteria to plant seeds typically resulted in a significant
improvement in seedling vigor, productivity, potassium uptake,
and plant growth [64,71]. The formation of organic acids directly
enhances K dissolution viaindirect or ligand-mediated mechanism

by creating a compound in solution with reaction products. This
is the way KSB distributes potassium to plants. Using Potassium
solubilizing bacteria as a biofertilizer can contribute to enhancing
environmentally sustainable agricultural output by reducing the
need for chemical fertilizers while enhancing plant growth and
yield [72]. These technologies are increasingly indispensable in
today’s agricultural operations. Biofertilizers will make a stronger
argument in the upcoming years as farming techniques change
and environmental dangers added with chemical fertilizers
become more apparent.

Table 3: Some examples of rhizobacteria that solubilize potassium and improve K absorption in various crops.

Function Plant - Growth Promoting Rhizobacteria (PGPR) Crops Ref.
Bacillus sp., Pseudomonas sp., Serratia sp. Solanum tuberosum [90]
Azospirillum, P, putida, Triticum aestivum L. [91]
Stenotrophomonas maltophilia, chryseobacterium [38]
Bacillus sp., Klebsiella sp., Pseudomonas sp. Cicer arietinum [92]
Phosphate solubilization
Herbaspirillum sp., Bacillus sp. Vigna unguiculata [34]
B. safensis, B. simplex, Lysinibacillus fusiformis, B. pumilus Glycine max [93]
S. marcescens, Pseudomonas sp. Oryza sativa [94]
P, brassicacerum, Acinetovacter calcoaceticus, P. marginalis Solanum lycopersicum [95]
Pseudomonas sp., Acinetovacter sp., Bacillus sp. Phaseolus vulgaris [96]
B. subtilis, K. oxycota Zea mays [97]
Rhizobium sp. Vica faba [98]
Phosphate solubilization Bacillus, Pseudomonas sp. Sorghum bicolr [48]
B. circulans Citrus sinensis [99]
Pseudomonas sp., Rhizobium, Mesorhizobium, Bacillus, Azotobacter | Leguminous and non-leguminous [100]
sp. plant
Bacillus sp. KB129, KB133 Sorghum bicolr [101]
V. paradox RAA3 Triticum aestivum L. [102]
Azotobacter sp. Az63, Az69 and Az70 Zea mays [103]
Siderophore production
Rhizobacteria sp. pulses [104]
Bacillus amyloliquefaciens ROH14 pepper [105]
Bacillus amyloliquefaciens FZB42 Arabidosis [106]

Phosphate Solubilization

Phosphorus [73] is the 2" most important element for plants,
and it can be absorbed only in monobasic ions or dibasic ions
[53,74]. Plants cannot absorb 95-99% of the P in the soil because
it is frozen, insoluble, or precipitated. As a result, crops can only
consume a tiny percentage of total soil P, and rarely enough [75,76].
It has been proven that a wide spectrum of microorganisms
contributes to the biogeochemical cycling of Phosphate in the
rhizospheric zone. As a result, inoculants based on Phosphate
solubilizing microorganisms (PSM) are expected to become
popular in the commercial market soon [77,78]. Researchers are
interested in employing a variety of PGPRs as plant inoculants due
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to their capacity to solubilize Phosphate [53,79]. These species
are commonly mentioned as possible P biofertilizers since many
agricultural soils have an intrinsic P shortage [37]. Heterotrophic
bacteria known as PSBs were chosen because of their ability to
release organic ions with a low molecular weight that acidify
the medium, consequently, phosphate compounds that are only
slightly soluble in produced media are dissolved [80]. Although
PSB produces many enzymes that aid in phosphate solubilization,
acidification is frequently used to accelerate this process
[39,78]. PSB strains from many taxa, including Pseudomonas,
Burkholderia, and Bacillus, have been isolated [81]. A recent
study discovered a positive association between Pseudomonas
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sp. Phosphate solubilizing capabilities and organic acid synthesis
[82]. Bacillus subtilis protects plants from environmental stress
and promotes safflower development [83]. NanoPhos was used in
field circumstances to increase the population of bacteria and soil
enzymes resulting in higher maize production [84]. Xanthomonas,
Chryseobacterium [88], Pantoea, Klebsiella, Enterobacter [87],
Pseodomonas sp.[89],and 18 microbial inoculants as biofertilizers.
Azotobacter [85], Bacillus, Rhodococcus, Serratia, Arthrobacter,
Gordonia, Delftia Phyllobacterium, sp. [86], Pantoea, Klebsiella,
Enterobacter [87], Xanthomonas, Chryseobacterium [88], and
Pseudomonas sp. [89].

Phytohormone production

Phytohormones, produced by plants and microorganismsboth,
have a profound impact on plant growth and development [107].
Plant hormone production refers to the positive phenomenon in
which beneficial microorganisms produce ethylene, abscisic acid,
gibberellins, cytokinin, and indole-3-acetic acid. Microbes create
and transport plant hormones, which are organic compounds
capable of causing morphological, physiological, and biochemical
effects in plants at extremely low concentrations. These hormones
function as signaling molecules, promoting nodulation, increasing
nutrient intake, and stimulating root growth [108]. The five main
groups of plant hormones are auxin, gibberellins, cytokinins,
abscisic acid, and 1-aminocyclopropane-1-carboxylase (ACC).
Polyamines and brassinosteroids are also produced in the tissues
of growing plants. Plants naturally create phytohormones.
Numerous articles have confirmed soil microbes’ ability to
produce phytohormones, which stimulate plant growth and
development [109].

Auxin production

Auxins naturally produce growth hormones. Auxins appear
in a variety of forms, but the most frequent one that generates
spontaneously is indole-3-acetic acid. participating in regulating
plant development. IAA stimulated the growth of lateral roots,
apical dominance, cell elongation, differentiation, blooming, fruit
set, and ripening [110,111]. Plants use oxidative deamination
or decarboxylation processes to convert tryptophan into [IAA
[112]. Bacillus, Klebsiella, Pseudomonas, Rhizobium, Enterobacter,
Bradyrhizobium, Agrobacterium, Indole-3-pyruvic acid,
for example, can synthesize phytohormones via the indole-3-
acetamide and indole-3-acetic acid aldehyde pathways [113-
115]. Cylindrospermum, Nostoc, Anabeana, Gloeothece, Calothrix,
Gloeothece, Plectonema, Chlorogloeopsis, and Gloeothece have all
been proven to produce [AA.

and

Gibberellins production

Tetracyclic diterpenoid compounds that is Gibberellins,
have a role in a variety of plant physiological and developmental
processes [116]. More than 136 gibberellins are widely distributed
in nature [117], with GA3 being the most regularly used and GA1
being the most active. Geranyl diphosphate can be turned into
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gibberellins by a variety of methods. GAs activates maximum
biological activity, such as fruit growth and floral induction in
plants, stem elongation, production of amylolytic enzymes, and
seed germination by breaking seed dormancy [118]. Gibberellin
synthesis is required for stem growth; low or non-existent
gibberellin levels lead plants to grow to a minimum height.
Gibberellins are produced by the fungus Gibberella fujikuroi
as well as the plants themselves. Nonetheless, several studies
have shown that PGPRs, such as Xanthomonas, Pseudomonas,
Agrobacterium, Micrococcus, Rhizobium Bacillus, Azospirillum, and
Clostridium, produce gibberellins [119-122].

Cytokinin production

Adenine derivatives known as cytokinins regulate
cytokinesis in plant tissues [123]. A variety of bacteria, primarily
streptomycetes and Azospirillum, Bacillus, Pseudomonas putida,
Pseudomonas fluorescens, and Bradyrhizobium have been shown to
produce cytokinin, primarily zeatin [122,124-126]. Plant cytokines
increase cell proliferation, root hair growth, and elongation
inhibit lateral root, and control root meristem differentiation
[127]. Furthermore, cytokinins have a role in influencing plants,
delaying leaf aging, and boosting mitotic cell division in shoots
and roots [128]. Bacterial inoculation that produces cytokinin
promotes plant shoot growth while decreasing the root-to-shoot
ratio [129]. A. chroococcum, a cytokinin-producing bacterium, was

introduced into a maize plant to enhance growth conditions [130].
Abscisic acid (ABA) production

Abscisic acid (ABA), often known as the stress hormone,
is primarily involved in plant development and response to
environmental stresses such as high salt, temperature, and drought
[131]. ABA production enhances water tolerance and drought in
plants. Bacteria like A. brasilense may increase the amount of ABA
generated by plants during water stress and drought by closing
stomata and thereby lowering water loss [132]. Furthermore, this
causes the formation of lateral roots.

Aminocyclopropane-1- deaminase

production

carboxylate (ACC)

At very low quantities, ethylene is an important growth
hormone that controls plant growth and development [133].
It is also known as a stress hormone because it is produced in
both biotic and abiotic stress conditions [28]. At lower doses, it
promotes plant growth, but at higher concentrations, it has been
demonstrated to be harmful. Ethylene promotes senescence, fruit
ripening, and the abscission of numerous plant components by
inhibiting auxin transport and stopping root extension [134,135].
Certain PGPRs, such as Rhizobium, Enterobacter, Azospirillum
brasilense, =~ Pseudomonas, =~ Achromobacter, = Agrobacterium,
Azospirillum, Alcaligenes, Serratia, Ralstonia, Burkholderia
spp., and others, create ACC directly as a precursor to ethylene.
These PGPRs can break down ACC while also promoting plant
development by reducing ethylene levels and increasing plant
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tolerance to harsh conditions [136-138]. Microbes depend upon
ACC deaminase hydrolysis to obtain ammonia and a-ketobutyrate,
both of which are carbon and nitrogen sources for their growth

[139]. Microorganisms that exhibit ACC deaminase activity are
expected to have higher growth and productivity, making them
potential sources of biofertilizers [140] (Table 4).

Table 4: Lists the many types of phytohormones that PGPRs create in a variety of crops.

PGPR Phytohormones Plant Ref.
Achromobacter xylosoxidans, Enterobacter cloacae ACC deminase, [AA Maize [143]
25 Acinetobacter sp. ALEB16 Abscisic acid Atractylodes lancea [150]
Azospirillum sp. Cytokinin production Mimosa pudica [147]

Bacillus Cytokinin production Cucumber [148]

Bacillus Gibberellin production Pepper [153]

Bacillus amyloliquefaciens QST713 IAA, EPS Alfalfa (Medicago sativa L.) [146]
Bacillus circulans ACC deminase Mustard [142]

Bacillus sp. Gibberellin production Alder [151]

Bacillus sp. ACC deminase, [AA, EPS Rice [144]

Bacillus subtilis 1AA Edible tubercle [114]
Herbaspirillum seropediacae 1AA Ocimum sanctum [17]
Pseudomonas BA-8 Cytokinin production Strawberry [149]
Pseudomonas putida ACC deminase Tomato [141]
Pseudomonas putida 1AA Canola [145]
Sphingomonas Gibberellin production Tomato [152]

PGPR: Indirect mechanism
ISR: Induced system resistance

Plants have a wide range of active defensive mechanisms that
are activated in response to plant diseases. These diseases affect
plant health and pose a long-term risk to ecosystem sustainability
and food production. Plants have an ISR, which protects them
from many diseases and biotic stressors [154]. ISR in plants is
mostly induced by Pseudomonas sp. via pathways regulated by
jasmonic acid and ethylene [155-158]. P, fluorescence was found to
significantly reduce the pathogenicity of phytopathogens such as
viruses, fungi, and bacteria while also inducing self-response (ISR)
in a variety of plants, including tobacco, radish, and Arabidopsis,
via jasmonic acid/ethylene (JA/ET) signaling pathways [159].
According to reports, a different type of plant hormones has been
demonstrated to facilitate ISR induction by producing elicitors,
which are microorganism-derived compounds [160,161]. Cell
wall constituents such as chitin, flagellin, lipopolysaccharides,
and others are examples of microbial elicitors [162], volatile
organic compounds (VOC) such as alcohols, phenolic compounds,
terpenoids, sulfides, and ketones [161], and metabolites such as
antibiotics and siderophores [163]. These elicitors work together
toregulate plant diseases and trigger the immune system response
(ISR) to a variety of pathogens. Occasionally, elicitors generate ISR
by interfering with phytohormones required for the plant signaling
system, triggering the defense response [164]. Other Bacillus
species, including B. pumilus, B. amyloliquefaciens, B. subtilis, B.
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cereus, and B. mycoides, as well as Pseudomonas isolates, have
also been shown to produce resistance to a variety of disorders
[165]. Dimethyl disulfide (DMDS) produced by B. cereus has been
shown to activate immunological responses (ISRs) in a variety
of pathogenic fungi [166]. Inoculating arabidopsis plants with P
simiae leads them to produce the phenolic compound coumarin
scopoletin, which acts as an elicitor to reduce soil-borne illnesses
[167]. Furthermore, it has been demonstrated that PGPRs may
change the physiology and morphology of plant roots in response
to pathogen invasion by secreting phytohormones such as auxin,
JA, NO, and cytokinins that protect the plant from infection [168-
170]. Microbes can boost plant ISR by many processes, such as
producing chitinase, -1,3-glucanase, phenylalanine ammonia-
lyase, peroxidases [171].

Biocontrol of Phytopathogen

Disease development and Pathogen attacks are the leading
causes of diminishing crop yield and food product contamination
in agricultural plants. Several chemical components, such as
insecticides, are used to protect agricultural yield against disease
[172]. On the other side, prolonged usage of these pesticides has
increased disease resistance and jeopardized the ecology. Thus,
biological control is intended to tackle the pathogen onslaught
instead of insecticides. Because of their enormous impact on plant
health and ability to suppress diseases and illnesses, rhizobacteria
are used as biofertilizers, promote plant development, and may
operate as phytopathogen biological agents. Disease assaults
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are prevented by a range of strategies that use non-toxic and
ecologically friendly microorganismsin crop fields. PGPRs from the
following genera can function as biocontrol agents: Enterobacter,
Beijerinckia, Derxia, Bacillus, Gluconacetobacter, Rhodococcus,
Klebsiella, Acinetobacter, Azotobacter, Azoarcus, Pseudomonas, and
Azospirillum, and others [173]. Antibiotic production is the most
generally recognized technique by which PGPRs resist infections’
damaging effects on plants. Antibiotics derived from Streptomyces,
Stenotrophomonas, Bacillus, Pseudomonas, and such as amphisin,
pyrrolnitrin, hydrogen cyanide (HCN), tropolone, kanosamine,
and others, have antifungal, antibacterial, and antiviral properties
and protect plants from diseases and foreign pathogens [174].

Chitinase

PGPRs also suppress phytopathogens by enzymatic synthesis.
PGPRs, such as S. marcescens, P. stutzeri, Paenibacillus sp., and S.
plymuthica, produce enzymes such chitinase, lipase, protease, and

others that hydrolyze fungal pathogens’ chitin, cellulose, proteins,
and hemicellulose [175,176].

Hydrogen cyanide (HCN)

Hydrogen cyanide, released by microorganisms such as
Rhizobium, Pseudomonas, Bacillus, and kills pathogens and
protects plants from illnesses [177]. According to El-Rahman et
al. [178], Rhizobacteria create hydrogen chloride (HCN), which
inhibits the growth of Meloidogyne incognita and Agrobacterium
tumefacience. Thus, phytohormone-producing bacteria (PGPRs)
are critical microorganisms with a major impact on crop
improvement and plant growth development. They provide a
variety of tasks, including phytohormone generation, nitrogen
fixation, potassium and phosphate solubilization, phytohormone
management, siderophore production,
structure (Figure 2).
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Figure 2: Previously documented significant contribution of microbial inoculants to increased crop production and productivity.

Conclusion

While Chemical fertilizers and insecticides are beneficial
for disease management and crop production, their continued
use is hazardous to human health, the soil environment, and
plant life. Using beneficial bacteria as biocontrol agents and
biofertilizers is a low-cost and environmentally benign answer
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to the challenge of sustainable agriculture. Biofertilizers may
replace chemical fertilizers and pesticides while increasing crop
output, hence their usage in agriculture should be encouraged.
Farmers should be educated on the advantages of employing
PGPRs as biofertilizers, with an emphasis on commercialization.
Consequently, we finalized that PGPRs are extremely beneficial to
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agriculture and that employing biofertilizers in agricultural fields
is the superior substitute to chemical fertilizers, which negatively
impact fauna, flora, and soil health. Microbial inoculants have a
bright future as biofertilizers since they provide various benefits
over typical chemical fertilizers. Growing knowledge of the
harmful environmental effects of conventional farming systems
has necessitated the adoption of more sustainable agricultural
practices. Furthermore, by reducing dependency on chemical
fertilizers and improving soil health, microbial inoculants as
biofertilizers can promote sustainable agriculture.
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