

Review Article
Volume 34 Issue 4 - December 2024
DOI: 10.19080/IJESNR.2024.34.556391

Int J Environ Sci Nat Res

Copyright © All rights are reserved by Sirajunisa Talath

Spectrophotometric Methods in Pharmaceutical Analysis: Principles, Reagents, and Applications

Sirajunisa Talath1* and Umme Hani2

¹Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, United Arab Emirates

²Department of Pharmaceutics, College of Pharmacy, King Khalid University, Saudi Arabia

Submission: November 28, 2024; Published: December 10, 2024

*Corresponding author: Sirajunisa Talath, Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; sirajunisa@rakmhsu.ac.ae

Abstract

Spectrophotometry is a fundamental analytical technique widely used in pharmaceutical science for both qualitative and quantitative analysis of drug compounds. Its principle is based on the measurement of light absorbed by a substance at specific wavelengths, which is directly proportional to the concentration of the analyte. Spectrophotometric methods are valued for their simplicity, cost-effectiveness, and ability to analyze drugs with minimal sample preparation. Various reagents, including complexing agents, oxidizing/reducing agents, pH indicators, and diazotization reagents, are employed to enhance detection and accuracy. These reagents play a crucial role in forming colored complexes or inducing chemical changes that increase the absorbance of drug compounds, allowing for precise measurements. Spectrophotometry is commonly applied in pharmaceutical assays, dissolution studies, stability testing, impurity profiling, and bioanalysis. Its high sensitivity enables the detection of trace impurities and degradation products, making it essential for quality control and regulatory compliance. Despite some limitations, such as interference from excipients and matrix effects, spectrophotometric methods remain indispensable in pharmaceutical research and industry. Continued advancements in reagent development and method optimization are expected to enhance the selectivity and reliability of these techniques.

Keywords: Spectrophotometry; Pharmaceutical analysis; Complexing agents; pH indicators; Drug assay; Stability testing; Impurity profiling

Introduction

Spectrophotometry is one of the most versatile and widely used analytical techniques in pharmaceutical sciences, enabling both qualitative and quantitative assessment of drugs and their related substances. The principle of spectrophotometry is based on measuring the intensity of light absorbed by a compound at a specific wavelength. This absorbance is proportional to the concentration of the compound in the sample, which is crucial for determining drug content, purity, and stability. Spectrophotometric methods are often preferred due to their simplicity, cost-effectiveness, and ability to provide accurate results with minimal sample preparation [1]. Reagents play a vital role in these methods by interacting with pharmaceutical compounds to form coloured complexes, which absorb light in the visible or ultraviolet range, allowing for precise quantification of the analytes [2].

The importance of spectrophotometric methods lies in their widespread applicability in the pharmaceutical industry for quality control, drug development, and regulatory compliance. The ability to utilize different reagents to target specific functional groups or chemical structures of drug molecules enhances the versatility of this technique, making it suitable for a broad range of applications, from drug assay to impurity profiling. Moreover, spectrophotometry offers a non-destructive means of analysis, preserving samples while providing valuable data on concentration, purity, and degradation, thus making it indispensable for routine pharmaceutical analysis [3]. Its significance extends to ensuring drug safety and efficacy, as regulatory agencies require precise analytical methods for drug approval and monitoring throughout the product's lifecycle [4].

Principles of Spectrophotometry

The principle of spectrophotometry is based on the measurement of the amount of light absorbed by a substance as a function of its wavelength. When a beam of light passes through a solution, some of the light is absorbed by the molecules in the solution, and the remaining light is transmitted. The extent of absorption depends on the concentration of the substance and its ability to absorb light at a particular wavelength, which is a property of its chemical structure [4]. This relationship is quantified by Beer-Lambert's Law, which states that the absorbance (A) of a substance is directly proportional to its concentration (c), the path length of the sample cell (l), and the molar absorptivity (ϵ), a constant that reflects how strongly a substance absorbs light at a given wavelength [5].

In spectrophotometry, different wavelengths of light are passed through a sample to determine its absorbance at each wavelength, typically in the ultraviolet (UV) or visible (Vis) range. The wavelength where maximum absorbance occurs, known as the λ max, is characteristic of the substance being analyzed and helps identify the compound. By comparing the absorbance values of unknown samples to a calibration curve constructed from standards of known concentrations, the concentration of the analyte in the sample can be determined [6].

Table 1: Reagents and Their Role in Spectrophotometric Methods.

Reagents Used in Spectrophotometric Methods

Complexing agents

Principle: Complexing agents form stable, colored complexes with pharmaceutical analytes, enhancing the absorbance of the analyte at a specific wavelength. This increases the sensitivity of the spectrophotometric method and allows for the quantification of the analyte in the sample [7-9].

Importance in the Pharmaceutical Industry: Complexing agents are crucial for the detection and quantification of metal ions and drug compounds that do not inherently absorb strongly in the UV-visible region. They are widely used in the assay of metal-containing drugs or drugs that can form complexes with metal ions, helping ensure the purity and efficacy of pharmaceutical formulations.

Examples:

- a) Potassium permanganate is used as an oxidizing and complexing agent in the assay of various drugs.
- **b) Ferric chloride** is used to form complexes with phenolic drugs like paracetamol.
- c) Ninhydrin is used to form a colored complex with amino acids, aiding in the analysis of peptides and proteins.

Reagent Type	Principle	
Complexing Agents	Form stable, colored complexes with analytes, enhancing absorbance and sensitivity for quantification.	
Oxidizing/Reducing Agents	Cause oxidation or reduction of the analyte, producing a measurable change in absorbance.	
pH Indicators	Change color in response to pH changes, allowing detection of acidic or basic drug compounds.	
Diazotization Reagents	Convert primary amines into diazonium salts, which couple with reagents to form-colored azo compounds.	

Table 2: Importance in Pharmaceutical Industry and Examples of Reagents.

Reagent Type	Importance in Pharmaceutical Industry	Examples
Complexing Agents	Crucial for detecting metal ions and non-chromophoric drugs, ensuring drug purity and efficacy.	Potassium permanganate, Ferric chloride, Ninhydrin.
Oxidizing/Reducing Agents	Useful for stability testing and analyzing drugs that lack inherent chromophores.	Ceric ammonium sulfate, Sodium thiosulfate.
pH Indicators	Essential for determining drug solubility, stability, and acid-base equilibria in formulations.	Bromocresol green, Phenolphthalein.
Diazotization Reagents	Important for analyzing drugs with primary amines and ensuring the absence of harmful by-products.	Sodium nitrite, N-(1-naphthyl)ethylenedia- mine.

Oxidizing/reducing agents

Principle: Oxidizing agents cause the oxidation of the drug compound, leading to the formation of a product with different absorbance properties, often detectable in the visible range. Reducing agents can similarly change the oxidation state of the analyte, resulting in a measurable color change [10-12].

Importance in the pharmaceutical industry: Oxidizing and reducing agents are essential for drugs that lack chromophores (light-absorbing groups). By modifying the oxidation state

of these drugs, these agents make it possible to analyze their concentration accurately. These reagents are especially useful for stability testing, as many degradation products result from oxidation.

Examples:

a) Ceric ammonium sulfate is commonly used as an oxidizing agent in the determination of ascorbic acid (vitamin C) and other antioxidants.

b) Sodium thiosulfate acts as a reducing agent in various spectrophotometric methods, especially in the analysis of iodinebased reactions.

pH Indicators

Principle: pH indicators are compounds that change color depending on the pH of the solution. The color change corresponds to the dissociation of the indicator molecule, which alters its light-absorbing properties, making it detectable via spectrophotometry [13-16].

Importance in the pharmaceutical industry: pH indicators are widely used in the analysis of acid-base equilibria of drugs, particularly for the titration of acidic or basic pharmaceuticals. They are crucial for ensuring the correct pH of formulations, which can affect drug stability, solubility, and bioavailability.

Examples:

- a) Bromocresol green is used for the assay of weak acids in pharmaceutical formulations.
- **b) Phenolphthalein** is a classic acid-base indicator used in the analysis of base-forming drugs, and it changes color at different pH levels to indicate the endpoint of titrations.

Diazotization reagents

- a) **Principle**: Diazotization reagents, typically sodium nitrite and hydrochloric acid, are used to convert primary amines in pharmaceuticals into diazonium salts. These diazonium compounds can then couple with another reagent, forming an azo compound, which is usually highly colored and can be measured spectrophotometrically [17-19].
- b) Importance in the pharmaceutical industry: Diazotization reactions are valuable for the analysis of drugs containing primary aromatic amines, which are common functional groups in many pharmaceuticals. This method provides a highly sensitive approach to quantifying these drugs in bulk and dosage forms. It is also frequently used in impurity profiling and quality control to ensure that harmful by-products like aniline derivatives are not present in pharmaceutical formulations.

Examples:

- a) Sodium nitrite and hydrochloric acid are used in the analysis of sulfonamide antibiotics, such as sulfanilamide.
- **b) N-(1-naphthyl) ethylenediamine** is used as a coupling reagent in diazotization reactions for the determination of drugs with amine groups, such as procaine.

The summary of spectrophotometric methods, as detailed by Anil Kumar Tallam's research, emphasizes the utilization of complexing agents, oxidizing/reducing agents, pH indicators, and diazotization reagents to enhance sensitivity, quantify drugs lacking inherent absorbance and ensure precise analysis of pharmaceutical compounds in bulk and dosage forms, ensuring quality control and impurity profiling.

Procedure for Spectrophotometric Analysis

The procedure for spectrophotometric analysis involves systematically preparing the sample, forming a measurable complex, and accurately assessing the absorbance to determine the concentration of the analyte [21-24]

- a) Sample Preparation: The pharmaceutical compound (drug) is dissolved in an appropriate solvent, chosen based on its solubility and compatibility with the spectrophotometric method. Specific reagents are added to the sample to induce a color change, enhancing the detection of the analyte. The choice of reagent depends on the chemical nature of the drug and the desired reaction (e.g., complex formation or pH adjustment).
- **b) Complex Formation**: Once the reagent is added, it reacts with the drug to form a colored complex or induces a chemical reaction that changes the absorbance characteristics of the solution. The reaction time and conditions (temperature, pH) must be optimized to ensure complete complex formation.
- c) Measurement of Absorbance: The absorbance of the prepared sample is measured using a spectrophotometer. The measurement is taken at a specific wavelength, usually corresponding to the maximum absorbance (λ max) of the complex or the reaction product. This wavelength provides the highest sensitivity for detecting the analyte.
- **d) Calibration Curve**: A calibration curve is created by measuring the absorbance of standard solutions with known concentrations of the drug. These absorbance values are plotted against their respective concentrations, generating a curve that follows Beer-Lambert's law. This curve is used as a reference for determining the concentration of the analyte in unknown samples.
- **e) Analysis of Results**: The absorbance of the sample is compared to the calibration curve, and the concentration of the drug in the sample is calculated. The results are then analyzed and reported, providing essential data for quality control, purity assessment, or drug content quantification.

Pharmaceutical Applications of Spectrophotometric Methods

Spectrophotometric methods are widely employed in pharmaceutical applications due to their versatility and effectiveness in analyzing various drug compounds and formulations [25-29].

Drug assay in bulk and formulations

Application: Spectrophotometric methods are extensively used for the assay of Active Pharmaceutical Ingredients (APIs) in both bulk and formulated dosage forms like tablets, capsules, and injections.

Example: Drugs like paracetamol, ibuprofen, and aspirin are commonly analyzed using UV-visible spectrophotometry to determine their concentration and ensure the correct dosage in formulations.

Dissolution studies

Application: Spectrophotometry is utilized to monitor the dissolution rate of drugs in solid dosage forms such as tablets. It helps assess how quickly and efficiently the drug is released from the formulation.

Example: During dissolution testing, the amount of drug released over time is measured spectrophotometrically, providing valuable insights into the release kinetics of the active ingredient, crucial for bioavailability studies.

Stability testing

Application: Stability studies rely on spectrophotometric methods to monitor drug degradation under various stress conditions (e.g., heat, light, humidity). Changes in absorbance can indicate the formation of degradation products.

Example: Drugs subjected to accelerated stability testing may exhibit different absorbance patterns, allowing analysts to track the stability and shelf life of the drug over time.

Quantification of impurities

Application: Impurities such as residual solvents, degradation products, or excipients in pharmaceuticals can be quantified using spectrophotometry.

Example: Impurity profiling of drug substances is performed by detecting trace impurities, which may influence the quality, safety, and efficacy of the pharmaceutical product.

Analysis of biological samples

Application: Spectrophotometric methods are employed in bioanalysis to measure drug concentrations in biological samples like plasma, urine, or blood.

Example: Techniques like diazotization are used to measure drugs containing amino groups in biological fluids, aiding in pharmacokinetic studies and therapeutic drug monitoring.

Kinetic studies

Application: The rate of chemical reactions, including drug degradation or interaction with excipients, can be monitored through spectrophotometry. This helps determine the kinetics of the reaction and activation energy.

Example: Spectrophotometric kinetic studies provide information about the stability of drugs over time, as well as the speed of degradation or interaction with other formulation components.

Advantages of Spectrophotometric Methods

Spectrophotometric methods offer several advantages in pharmaceutical analysis, particularly due to their simplicity and cost-effectiveness. These methods are easy to implement and require relatively inexpensive equipment compared to more complex techniques like HPLC or LC-MS [30-35].

- a) Simplicity and Cost-Effectiveness: Spectrophotometric methods are straightforward to execute and cost significantly less than advanced analytical techniques such as HPLC or LC-MS. This makes them accessible for routine use in quality control laboratories, where quick and accurate analysis is essential.
- **b) Non-Destructive**: One of the key advantages of spectrophotometry is that it is often a non-destructive method. This allows for the analysis of samples without altering or consuming them, which is especially valuable in testing limited or expensive pharmaceutical materials.
- c) Wide Applicability: Spectrophotometry can be used to analyze a vast range of compounds, including both organic and inorganic substances. This versatility makes it suitable for a variety of pharmaceutical applications, from drug formulation analysis to impurity detection.
- **d) High Sensitivity**: When paired with appropriate reagents, spectrophotometric methods can achieve high sensitivity, allowing for the detection and quantification of drugs even at very low concentrations. This makes it an effective method for analyzing trace levels of substances, critical for impurity profiling and stability testing.

Limitations of Spectrophotometric Methods

Spectrophotometric methods, while versatile, face limitations such as interference from excipients in complex formulations, which can lead to inaccurate results. Additionally, they often lack the selectivity needed to distinguish between similar compounds without the aid of additional separation techniques. [36-39].

- a) Interference from Excipients: In complex pharmaceutical formulations, excipients (inactive ingredients) can interfere with the spectrophotometric analysis by absorbing light at similar wavelengths as the analyte, leading to inaccurate measurements. This interference necessitates careful method development or the use of masking agents to ensure reliable results.
- **b) Limited Selectivity**: Spectrophotometric methods may lack the selectivity required to distinguish between similar compounds, especially when multiple components absorb light at similar wavelengths. In such cases, additional separation techniques like chromatography are often required to isolate the analyte before spectrophotometric analysis.

International Journal of Environmental Sciences & Natural Resources

c) Matrix Effects: Variations in the sample matrix, particularly in biological samples such as blood, plasma, or urine, can alter the light absorption characteristics of the analyte, potentially skewing the results. To mitigate matrix effects, careful sample preparation, the use of internal standards, and method validation are crucial to ensure accurate and reproducible data.

Conclusion

Spectrophotometric methods offer a versatile and effective approach for the analysis of pharmaceutical compounds, providing accurate and reliable results across a wide range of applications. With the use of various reagents, these methods can detect and quantify drugs and impurities at low concentrations, making them integral to drug development, quality control, and regulatory compliance. Despite challenges such as interference from excipients and limited selectivity, the adaptability and cost-effectiveness of spectrophotometric techniques make them invaluable in the pharmaceutical industry. Further advancements in reagents and sample preparation techniques will continue to improve their precision, expanding their utility in pharmaceutical research and analysis.

References

- Kumar AT (2016) Development and validation of RP-LC-UV method for determination of Ursodeoxycholic acid in drug substance and drug product. J Global Trends Pharm Sci 7(3): 3429-3435.
- Ranganathan D, Thangavel S, Sharma A (2010) Method development and validation for the estimation of Atorvastatin Calcium in bulk drug and pharmaceutical dosage forms by RP-HPLC. Int J Pharm Pharm Sci 2(4): 178-182
- 3. Davies NM, Takemoto JK, Brocks DR (2010) Pharmacokinetics and pharmacodynamics of Nonsteroidal Anti-inflammatory Drugs in the treatment of postoperative pain: issues and perspectives. Pharmaceutics 2(4): 411-438.
- Kumar S, Reddy KV, Swamy AJ (2010) A new stability-indicating RP-HPLC method for simultaneous estimation of Levocetirizine and Montelukast in combined dosage forms. Int J Pharm Pharm Sci 2(4): 125-128.
- Banerjee SK, Sinha S, Roy P (2010) Development and validation of a stability-indicating RP-HPLC method for the estimation of Nebivolol Hydrochloride in bulk and pharmaceutical dosage forms. Int J Pharm Pharm Sci 2(4): 145-150.
- Aswani CH, Kumar T, Anil Kumar BM, Gurupadayya S, Navya S, et al. (2010) Novel spectrophotometric determination of valacyclovir and cefotaxime using 1,2-napthaquinone-4-sulfonic acid sodium in bulk and pharmaceutical dosage form. Arch Appl Sci Res 2(4): 278-287.
- Ermer J, Miller JH (2005) Method Validation in Pharmaceutical Analysis: A Guide to Best Practice. Weinheim: Wiley-VCH.
- Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC Method Development. (2nd edn), John Wiley & Sons; 1997, New York, USA.
- Swartz ME, Krull IS (2012) Analytical Method Development and Validation. Boca Raton: CRC Press; 2012.
- Satinder Ahuja, Dong MW (2005) Handbook of Pharmaceutical Analysis by HPLC. Amsterdam: Elsevier.

- 11. International Conference on Harmonization (ICH) Guidelines Q2 (R1). ICH Secretariat; 2005.
- 12. FDA Guidance for Industry: Analytical Procedures and Methods Validation for Drugs and Biologics (2015) US Department of Health and Human Services.
- 13. Skoog DA, Holler FJ, Crouch SR (2017) Principles of Instrumental Analysis. (7th edn), Belmont: Cengage Learning.
- 14. United States Pharmacopeia and National Formulary (USP 43-NF 38). Rockville: United States Pharmacopeial Convention; 2020.
- 15. British Pharmacopoeia Commission. British Pharmacopoeia 2020. London: The Stationery Office; 2020.
- 16. European Pharmacopoeia 10.0. Strasbourg: European Directorate for the Quality of Medicines & HealthCare; 2019.
- 17. Japanese Pharmacopoeia 17th Edition. Tokyo: Ministry of Health, Labour and Welfare; 2016.
- 18. International Pharmacopoeia 10th Edition. Geneva: World Health Organization; 2020.
- 19. O'Neil MJ (2013) The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. (15th edn), Whitehouse Station: Merck & Co.
- 20. Bhutani H, Singh S (2013) Development and validation of a stability-indicating HPLC method for the simultaneous determination of Olmesartan Medoxomil, Amlodipine Besylate, and Hydrochlorothiazide in tablet dosage form. J Pharm Biomed Anal 62: 13-19.
- 21. International Conference on Harmonization (ICH). "Validation of analytical procedures: text and methodology Q2 (R1)." ICH Harmonized Tripartite Guideline. 2005.
- Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC Method Development. (2nd edn), New York: Wiley-Interscience.
- Lough WJ, Wainer IW (1995) High-Performance Liquid Chromatography: Fundamental Principles and Practice. 1st ed. London: CRC Press.
- 24. Zhao L, Dong F, Liu X, Xu J, Li Y (2013) Determination of Trifloxystrobin and its metabolite CGA 321113 in soil by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 36(18): 3048-3056.
- 25. Kumar T, Gurupadayya BM, Reddy MB, Raju MV (2011) Selective and validated spectrophotometric method for determination of acyclovir and valacyclovir using Nbromosuccinimide. J Pharm Res 4: 24-27
- 26. Hibbert DB (2007) Quality assurance for the analytical chemistry laboratory." Oxford: Oxford University Press.
- Snyder LR, Dolan JW, Carr PW (2004) The hydrophobic-subtraction model of reversed-phase column selectivity. J Chromatogr A 1060(1-2): 77-116.
- 28. Naidong W, Lee YH (2004) High-throughput bioanalytical sample preparation: methods and automation strategies. J Pharm Biomed Anal 34(4): 695-705.
- 29. Dong MW (2006) Modern HPLC for practicing scientists. Hoboken: John Wiley & Sons.
- 30. Kazakevich YV, Lobrutto R (2007) HPLC for Pharmaceutical Scientists. Hoboken: John Wiley & Sons.
- 31. Swartz ME, Krull IS (2012) Analytical method development and validation. Boca Raton: CRC Press.
- 32. Anil Kumar T, Gurupadayya BM, Rahul Reddy MB, Prudhvi Raju MV (2012) Selective and validated spectrophotometric methods for determination of acyclovir and ganciclovir with 2,4-DNP as reagent. J Appl Chem Res 6: 14-24.

International Journal of Environmental Sciences & Natural Resources

- Zhan S, Chen Y, Li D, Yu C (2012) Stability-indicating RP-HPLC method for the determination of Valsartan in bulk and pharmaceutical dosage forms. Asian J Chem 24(10): 4519-4524.
- 34. Gouda AA, Hashem H, Hassan W (2012) Spectophotometric methods for determination of cefdinir in pharmaceutical formulations via derivatization with 1,2-naphthoquinone-4-sulfonate and 4- chloro-7-nitrobenzo-2-oxa-1,3-diazole. Drug Testing Anal 4(12): 991-1000.
- 35. Ibrahim HA, Hasan MA, Abdullah HM, Khalaf MY (2022) Spectrophotometric determination of clotrimazole and Phenylephrine-HCl in pharmaceutical formulation using 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS) as a chromogenic reagent. J Indian Chem Soc 99(3): 100373.
- 36. El Sheikh R, Hassan WS, Yousse, AM, Hameed AM, Subaihi A, et al. (2022) Eco-friendly ultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction of nickel in water, food and tobacco

- samples prior to FAAS determination. Int J Environ Anal Chem 102(4): 899-910
- 37. Hafez EM, El Sheikh R, Sayqal AA, AlMasoud N, Gouda AA (2020) Ultrasound-assisted ionic liquid microextraction for preconcentration of cadmium in water, vegetables and hair samples prior to FAAS determination. Curr Anal Chem 16(8): 1022-1031.
- 38. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use (2005). ICH Harmonized Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology, Vol. Q2(R1), Complementary Guideline on Methodology dated 06 November 1996, ICH, London.
- Miller JN, Miller JC (2010) Statistics and Chemometrics for Analytical Chemistry. (6th edn), Pearson Education Limited: Essex, England, p. 202.

Your next submission with Juniper Publishers will reach you the below assets

- · Quality Editorial service
- · Swift Peer Review
- · Reprints availability
- · E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats
 (DMC Figure Figure Applie)

(Pdf, E-pub, Full Text, Audio)

Unceasing customer service

Track the below URL for one-step submission https://juniperpublishers.com/online-submission.php