

Review Article

Volume 7 Issue 4 - January 2025
DOI: 10.19080/IJOPRS.2025.07.555719

Int J Pul & Res Sci

Copyright © All rights are reserved by Maria Isabel Gomez Coral

Heparin-Induced Immune Thrombocytopenia in the Management of Acute Anticoagulation for Pulmonary Thromboembolism: A Review

Eric Brodetsky¹, Christina Thymalil², Vianka Vanessa Yanez Montalvo³, Melanie Dayana Yanez Montalvo³, Krish Patel⁴, Alberto Ayala Aguilar^{5,6}, Chinyere Pamugo⁷, Hemeesh Tandel⁴, and Maria Isabel Gomez Coral⁸.

¹American University of Antigua St. Johns Antigua.

²Nova Southeastern University, FL, USA.

³Universidad de Guayaquil, Ecuador.

⁴C. U. Shah Medical College, India.

⁵Universidad del Noreste, México.

⁶Anderson Cancer Center, Houston, TX, USA.

⁷UTHealth Science Houston Texas, USA.

⁸Universidad del Valle, México.

Submission: January 03, 2025; **Published:** January 09, 2025

***Corresponding author:** Maria Isabel Gomez Coral, Universidad del Valle, 154 Samson Rd, Frisco, TX, 76081, Mexico

Abstract

Pulmonary thromboembolism (PTE) is a critical cardiovascular condition that frequently necessitates anticoagulation with heparin. However, the occurrence of heparin-induced thrombocytopenia (HIT), a rare yet life-threatening immune-mediated complication, poses significant challenges to the management of PTE. This review examines the intersection of PTE and HIT, with a focus on pathophysiology, diagnostic criteria, and evidence-based treatment strategies. The pathogenesis of HIT involves the formation of antibodies against platelet factor 4 (PF4)-heparin complexes, triggering platelet activation, thrombocytopenia, and a prothrombotic state. Diagnostic tools, including the 4Ts score and laboratory assays such as enzyme-linked immunosorbent assay (ELISA) and serotonin release assay (SRA), are pivotal for accurate and timely diagnosis. Management of PTE in the context of HIT requires a transition from heparin to non-heparin anticoagulants, such as direct thrombin inhibitors (argatroban, bivalirudin) or factor Xa inhibitors (fondaparinux, direct oral anticoagulants). Emerging data highlight the efficacy of these agents in mitigating thrombotic complications while reducing bleeding risk. Preventive measures, including judicious use of heparin and early monitoring, remain critical in high-risk patients. This review synthesizes current knowledge to provide a comprehensive framework for optimizing the care of patients with PTE and HIT, emphasizing individualized treatment approaches and the importance of multidisciplinary collaboration.

Keywords: Heparin Induced Immune Thrombocytopenia; Acute Anticoagulation Therapy; Pulmonary Thromboembolism,

Abbreviations: PTE: Pulmonary Thromboembolism; PF4: Platelet Factor 4; 4Ts: 4Ts Score (a diagnostic tool for HIT); ELISA: Enzyme-Linked Immunosorbent Assay; DOACs: Direct Oral Anticoagulants; AVM: Arteriovenous Malformation; O-W-R Syndrome: Osler-Weber-Rendu Syndrome; HHT: Hereditary Hemorrhagic Telangiectasia; CNS: Central Nervous System; PAVM: Pulmonary Arteriovenous Malformation; DAVF: Dural Arteriovenous Fistula; CTA: Computed Tomography Angiography; MRA: Magnetic Resonance Angiography; DSA: Digital Subtraction Angiography; TGF- β : Transforming Growth Factor Beta; ENG: Endoglin ACVRL1: Activin Receptor-Like Kinase 1; VEGF: Vascular Endothelial Growth Factor; PTFE: Polytetrafluoroethylene; MRI: Magnetic Resonance Imaging; ICU: Intensive Care Unit

Introduction

Pulmonary thromboembolism (PTE) is a common and potentially life-threatening condition characterized by the obstruction of pulmonary arteries by thrombi, typically originating from deep venous thrombosis. It is a leading cause of

cardiovascular morbidity and mortality worldwide, with an annual incidence estimated at 60–70 cases per 100,000 individuals. The pathophysiology of PTE involves mechanical obstruction and the release of inflammatory mediators, resulting in increased

pulmonary vascular resistance, right ventricular strain, and impaired gas exchange. Clinically, PTE presents along a spectrum of severity, ranging from asymptomatic subsegmental emboli to massive thromboembolic events causing hemodynamic instability and death. Prompt recognition and effective anticoagulation are central to reducing the morbidity and mortality associated with PTE [1,2].

Heparin-induced thrombocytopenia (HIT) is a serious, immune-mediated adverse effect of heparin therapy, occurring in approximately 0.1–5% of patients exposed to unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH). HIT is defined by a decrease in platelet count and a paradoxical prothrombotic state mediated by antibodies targeting platelet factor 4 (PF4)-heparin complexes. This condition is particularly relevant in the acute setting, where heparin remains a cornerstone therapy for anticoagulation in PTE. The incidence of HIT varies by clinical context, with hospitalized and post-surgical patients being at highest risk. For patients with concurrent PTE, the development of HIT complicates management, necessitating rapid diagnosis and transition to non-heparin anticoagulants to prevent further thrombotic events [2-4]. This review aims to explore the intersection of HIT and PTE, focusing on the epidemiology, pathophysiology, and clinical significance of these conditions. It will discuss the diagnostic challenges and treatment strategies for HIT in patients presenting with acute PTE, emphasizing the role of alternative anticoagulants and the implications for clinical practice. By synthesizing current evidence, this article provides a comprehensive framework for optimizing the management of this complex and high-risk patient population.

Pathophysiology of HIT

The immunological pathophysiology of HIT II was first proposed by Rhodes et al. in the early 1970s by experimentally demonstrating IgG fraction in the serum of HIT patients produced by in vitro aggregation in the presence of therapeutic concentration of heparin [5]. Normally, Platelet Factor 4 (PF4) is produced by megakaryocytes and released by the alpha granules of platelets upon platelet activation when blood vessels are damaged or a clot needs to be formed in times of excessive bleeding [6,7]. PF4 is a 7.8kDa chemokine receptor of 70 amino acid length, that plays a role in coagulation, inflammation, hematopoiesis, and immune cell maturation [8]. Positively-charged PF4 binds to the negatively-charged heparan, an endogenous heparin-like substance present on the surface of endothelial cells, or exogenous heparin at a much higher affinity [7]. PF4 is able to neutralize the heparin molecule, thus inhibiting its ability to stimulate antithrombin III activity. The pathophysiology of HIT however begins with the generation of IgG, IgA and IgM antibodies against the PF4-heparin complex. In HIT, only the IgG antibodies targeting PF4-heparin complex play a role; the IgG antibodies bind to Fc_γIIA receptors on the surface of platelets and monocytes and stimulate activation [8].

Activation of platelets very quickly leads to platelet aggregation and procoagulant activity with the release of thrombin. Activated

platelets also continue to release PF4, thus triggering the formation of additional IgG antibodies and ensuring a rather quick pro-thrombotic cascade [3]. Furthermore, monocyte activation stimulates Tissue Factor (TF), a glycoprotein which binds to Factor VII/VIIa, thus initiating the coagulation cascade proteolytic activation of Factor IX and X [7]. The highly accelerated activation here burns through platelets as thrombi are created. Furthermore, macrophages are then activated by the IgG coated platelets, leading to the consumption of platelets by macrophages [6]. This severely hypercoagulable state can lead to symptomatic thrombocytopenia which is characterized by Heparin Induced Thrombocytopenia (HIT). The majority of patients will present with a decline in platelets by half of baseline or less than 150.000/ mm^3 platelet count [9].

On the other hand, HIT I describes the non-immunological response to heparin exposure which is characterized by the direct interaction of heparin and platelet surface leading to decreased cAMP and activation thresholds [10]. Easily triggered stimulation and activation of platelets, similar to HIT II leads to rapid decrease in platelet number count as supply becomes unable to keep up with the body's demands. HIT I is much more common occurrence compared to the HIT II, is a diagnosis of exclusion and most likely to occur post administration of large dose of unfractionated heparin [10].

Clinical Diagnosis of HIT

The clinical diagnosis of heparin-induced thrombocytopenia (HIT) requires a combination of clinical assessment and laboratory confirmation to identify the presence of anti-platelet factor 4 (PF4)/heparin antibodies. Early and accurate diagnosis is essential to minimize the risk of thrombotic complications while avoiding unnecessary cessation of heparin in patients who do not have HIT [11].

Diagnostic Criteria: The “4Ts” Score

The “4Ts” score is a widely used clinical tool for estimating the pretest probability of HIT. It evaluates four key domains: thrombocytopenia, timing of platelet count decrease, the presence of thrombosis, and the absence of alternative causes of thrombocytopenia. Thrombocytopenia is graded based on the degree and timing of platelet count decline, typically greater than 50% within 5–10 days of heparin exposure. The timing domain considers whether thrombocytopenia occurred within the expected window after heparin initiation or earlier in patients with recent prior exposure. Thrombosis includes both venous (e.g., deep vein thrombosis or pulmonary embolism) and arterial thrombotic events. Lastly, the score assesses the likelihood of other explanations for thrombocytopenia, such as sepsis or other drug-induced causes [11,12].

The 4Ts score stratifies patients into three categories: low (0–3), intermediate (4–5), or high (6–8) probability of HIT. A low score effectively rules out HIT, whereas intermediate and high scores warrant laboratory confirmation. This tool provides

a structured framework to guide initial clinical evaluation, improving diagnostic accuracy and patient outcomes [12].

Laboratory Confirmation

Laboratory testing is essential for confirming HIT and involves two primary assays: enzyme-linked immunosorbent assay (ELISA) and the serotonin release assay (SRA). ELISA detects antibodies against PF4/heparin complexes and is highly sensitive. However, its specificity is limited, as some patients produce anti-PF4 antibodies that do not activate platelets. A strong positive ELISA result, indicated by an optical density (OD) >1.0 , increases the likelihood of true HIT [13,14]. The serotonin release assay (SRA) is a functional test considered the gold standard for HIT diagnosis. It detects platelet activation by HIT antibodies in the presence of heparin. While SRA has high sensitivity and specificity, its complexity, cost, and limited availability can delay diagnosis. These limitations underscore the importance of combining clinical scoring with laboratory results to optimize diagnostic accuracy [13,14].

Challenges in Differentiating HIT from Other Causes of Thrombocytopenia

Distinguishing HIT from other causes of thrombocytopenia presents significant challenges, particularly in hospitalized patients where thrombocytopenia is common. Sepsis, disseminated intravascular coagulation (DIC), drug-induced thrombocytopenia from non-heparin agents, and immune thrombocytopenia (ITP) all share overlapping clinical features, such as low platelet counts and thrombotic complications. Sepsis-induced thrombocytopenia, for example, often mimics HIT due to concurrent inflammation and coagulopathy [11-15]. To address these diagnostic challenges it is important to maintain a high index of suspicion for HIT in patients exposed to heparin with unexplained thrombocytopenia or thrombosis. A structured approach combining the 4Ts score, serial platelet monitoring, and confirmatory laboratory testing is essential for differentiating HIT from alternative causes and ensuring appropriate management [11-15].

Implications of HIT in Acute PTE Management

Heparin-induced thrombocytopenia (HIT) significantly complicates the management of pulmonary thromboembolism (PTE) due to its dual impact on anticoagulation strategies and the elevated risk of thrombotic events. Patients with HIT require a delicate balance between preventing further thrombotic complications and minimizing the risks of bleeding, particularly in the acute phase of PTE treatment [16-21].

Consequences of HIT on Anticoagulation Strategies

In patients with PTE, anticoagulation is the cornerstone of treatment. However, the development of HIT necessitates an immediate shift away from heparin-based therapies, including both unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH), as their continued use exacerbates platelet

activation and thrombin generation. Alternative anticoagulants, such as direct thrombin inhibitors (e.g., argatroban or bivalirudin) or factor Xa inhibitors (e.g., fondaparinux), are recommended for managing anticoagulation in HIT patients. These agents are effective in reducing thrombosis risk without relying on PF4-mediated mechanisms [17-20].

Increased Risk of Thrombotic Complications in PTE Patients

HIT is a prothrombotic disorder characterized by widespread platelet activation and an inflammatory state, significantly increasing the risk of thrombotic complications, including venous thromboembolism (VTE) and arterial thrombosis. Studies have demonstrated that up to 50% of patients with untreated HIT develop new thrombotic events, with pulmonary embolism being one of the most severe outcomes. Moreover, HIT-associated thrombosis often involves atypical sites, such as cerebral veins or mesenteric vessels, further complicating clinical management [16-19]. In PTE patients with HIT, the hypercoagulable state may exacerbate the burden of thromboembolic disease, potentially leading to higher rates of morbidity and mortality. Timely recognition and treatment of HIT are crucial to mitigate these risks and prevent catastrophic outcomes [18].

Case Studies and Outcomes in PTE Patients with HIT

Clinical data underscore the severity of HIT in the context of PTE. For instance, a retrospective analysis of patients with HIT-associated thrombosis revealed that those with PTE experienced worse outcomes, including increased rates of recurrent thrombotic events and prolonged hospitalization. In one case study, a patient with acute PTE and HIT was successfully managed using argatroban, achieving rapid resolution of symptoms and stabilization of platelet counts. These findings highlight the importance of individualized management strategies tailored to the unique challenges posed by HIT in PTE patients [16-21].

Alternative Anticoagulation Strategies

Direct Thrombin Inhibitors

Mechanism of Action

Argatroban is a synthetic direct thrombin inhibitor that exerts its anticoagulant effects by reversibly binding to the active site of thrombin, thereby inhibiting its catalytic activity [22]. This inhibition interferes with several thrombin-mediated processes, including fibrin formation, the activation of coagulation factors V, VIII, and XIII, protein C, and the aggregation of platelets. A key distinction between Argatroban and heparin is that Argatroban does not necessitate the presence of antithrombin III to achieve its anticoagulant effects [23].

Indications

Argatroban is primarily indicated for the prevention and treatment of thrombosis in patients diagnosed with heparin-

induced thrombocytopenia (HIT) [24]. The American College of Cardiology (ACC) recommends the use of Argatroban in patients undergoing percutaneous coronary intervention (PCI), as these individuals are at increased risk for HIT or bleeding complications [25].

Dosing

The dosing regimen for Argatroban is contingent upon the clinical indication and the individual patient's condition [22]. For HIT prophylaxis or treatment, the standard initial dose is generally set at 2 mcg/kg/min via continuous intravenous infusion, with adjustments made to reach a target activated partial thromboplastin time (aPTT) of 1.5 to 3 times the baseline value [23]. In the context of PCI for patients with HIT, an initial dose of 25 mcg/kg/min IV infusion is prescribed, accompanied by a bolus of 350 mcg/kg administered IV over 3 to 5 minutes [24]. A study conducted by Jang et al. (1999) highlighted the efficacy of various doses of Argatroban compared to heparin in achieving thrombolysis in myocardial infarction (TIMI) grade 3 flow at the 90-minute mark, emphasizing the importance of monitoring the activated clotting time (ACT) for therapeutic adjustment [25,26].

Evidence and Clinical Use of Bivalirudine

Bivalirudine is another synthetic direct thrombin inhibitor, primarily utilized as an anticoagulant during percutaneous coronary interventions (PCI) [27]. Its mechanism of action is based on the inhibition of thrombin, thereby preventing thrombus formation during and following the procedure [28]. Numerous clinical trials have substantiated the effectiveness of Bivalirudine in lowering the risk of ischemic complications during PCI, positioning it as a valuable alternative to heparin, especially for patients suffering from HIT [27,28]. The recommended dosing protocol for Bivalirudine involves an initial bolus of 0.75 mg/kg, followed by a continuous infusion at a rate of 1.75 mg/kg/h during the intervention [29]. In cases of ST-segment elevation myocardial infarction (STEMI), the infusion duration may extend up to 4 hours post-procedure [29,30]. Careful monitoring of coagulation parameters, including ACT and dilute thrombin time (DTT), is essential to ensure the maintenance of therapeutic levels, particularly in patients with renal impairment, as Bivalirudine is partially eliminated via renal clearance [27,29].

Factor Xa Inhibitors

Fondaparinux has emerged as a valuable treatment option for patients experiencing heparin-induced thrombocytopenia (HIT) associated with pulmonary thromboembolism (PTE) [31]. Its efficacy in this setting is attributed to its selective inhibition of Factor Xa, which plays a crucial role in thrombin generation and the coagulation cascade [31]. For patients with HIT in PTE, fondaparinux provides effective anticoagulation and minimizes the risk of further thrombocytopenia, making it a safe alternative when conventional anticoagulants are contraindicated [33].

Direct oral anticoagulants (DOACs) have gained traction as promising alternatives in anticoagulation strategies, particularly as Factor Xa inhibitors [32]. Evidence suggests that DOACs may offer varied benefits, patient adherence, and improved outcomes without necessitating routine monitoring [34]. Studies have shown that oral administration and predictable pharmacokinetics of DOACs can be effective in preventing recurrent venous thromboembolism and managing the complications associated with HIT [32]. Collectively, fondaparinux and DOACs represent significant advancements in the management of anticoagulation, particularly for high-risk patient populations [34].

Transition to Long-Term Anticoagulation

Transitioning patients with heparin-induced thrombocytopenia (HIT) and pulmonary thromboembolism (PTE) to long-term anticoagulation requires careful planning to prevent recurrent thrombosis while minimizing bleeding risks. This process often involves bridging therapies and individualized recommendations for extended anticoagulation.

Bridging Therapies

In the acute phase of HIT, immediate cessation of heparin is critical, with initiation of a non-heparin anticoagulant such as a direct thrombin inhibitor (e.g., argatroban or bivalirudin) or the factor Xa inhibitor fondaparinux. These agents provide effective short-term anticoagulation while avoiding the PF4-heparin immune response characteristic of HIT [31,33,35,36].

Argatroban is particularly useful in critically ill patients because of its short half-life and the ability to monitor its effects using activated partial thromboplastin time (aPTT). However, transitioning from argatroban to oral anticoagulants, such as warfarin, requires careful overlap. Warfarin should only be initiated once the platelet count has recovered to at least 150,000/ μ L to avoid warfarin-induced limb gangrene or skin necrosis. During the transition, argatroban is continued until the international normalized ratio (INR) is therapeutic on both agents, accounting for argatroban's effects on INR measurements [35-38].

Recommendations for Extended Anticoagulation in PTE

Patients with HIT-associated PTE are at high risk of recurrent thromboembolism, warranting extended anticoagulation. Direct oral anticoagulants (DOACs), such as rivaroxaban or apixaban, are increasingly preferred for long-term management due to their ease of use, lack of routine monitoring, and favorable safety profiles. In contrast, warfarin remains an option for patients with contraindications to DOACs or in cases requiring close monitoring [33-37]. The optimal duration of anticoagulation depends on the individual's risk factors for recurrence and bleeding. Current guidelines recommend, at least three months of anticoagulation

for patients with HIT and provoked PTE (e.g., surgery or immobilization); and extended anticoagulation (beyond three months) for those with unprovoked PTE or persistent risk factors such as cancer or antiphospholipid syndrome [36]. The decision should consider patient-specific factors, including comorbidities, bleeding risk, and patient preferences [33-38].

Monitoring and Follow-Up

Patients transitioning to long-term anticoagulation require regular follow-up to assess for bleeding complications, thrombotic recurrence, and adherence to therapy. Education on signs of bleeding, appropriate medication use, and the importance of follow-up is crucial to ensure optimal outcomes.

Risk Mitigation and Prevention of HIT

Preventing heparin-induced thrombocytopenia (HIT) is crucial to reducing the morbidity and mortality associated with this serious prothrombotic condition. Effective prevention strategies focus on minimizing unnecessary heparin exposure, implementing targeted screening protocols for high-risk patients, and employing non-heparin anticoagulants for prophylaxis in specific situations.

One of the primary strategies for mitigating the risk of HIT is reducing exposure to heparin products, particularly unfractionated heparin (UFH), which is more strongly associated with HIT compared to low-molecular-weight heparins (LMWH) [11]. The incidence of HIT with UFH ranges from 1%–5%, whereas it is less than 1% with LMWH [11,12]. When clinically appropriate, LMWH is preferred due to its lower immunogenicity. Additionally, avoiding prolonged use of heparin, particularly in postoperative or intensive care settings, can reduce the risk. Mechanical prophylaxis devices, such as intermittent pneumatic compression, offer an alternative for patients with low-to-moderate thrombotic risk, further minimizing the need for heparin [12].

For patients at high risk of HIT, such as those undergoing cardiothoracic surgery or requiring prolonged heparin exposure, screening protocols are essential. These protocols typically involve obtaining a baseline platelet count before initiating heparin therapy, followed by regular platelet count monitoring every 2–3 days during the first 5–10 days of heparin use [12]. Early detection of a platelet count drop exceeding 50% or the development of new thrombotic events can facilitate timely diagnosis and intervention, preventing severe complications. High-risk populations also benefit from standardized screening, which ensures the early identification of HIT and reduces the likelihood of adverse outcomes [11,12] [15,21,38]. In patients with a known history of HIT or a high risk of developing it, non-heparin anticoagulants should be considered for prophylaxis. Fondaparinux, a synthetic pentasaccharide that selectively inhibits factor Xa, is increasingly used for prophylaxis in surgical and medical patients. Direct

thrombin inhibitors, such as argatroban or bivalirudin, are effective in high-risk surgical settings, including cardiac bypass or extracorporeal membrane oxygenation (ECMO). Additionally, the use of heparin-coated devices in invasive procedures should be avoided in patients with a history of HIT to eliminate potential triggers [11,12] [21,38]. In general, preventing HIT requires a comprehensive approach involving reduced heparin use, early identification of at-risk patients, and alternative anticoagulation strategies. These preventive measures can significantly decrease the incidence of HIT and its associated complications, improving patient outcomes.

Conclusion

The interplay between heparin-induced thrombocytopenia (HIT) and pulmonary thromboembolism (PTE) presents a significant clinical challenge that requires a multidisciplinary approach for optimal management. HIT complicates the standard anticoagulation strategies used for PTE, necessitating the timely cessation of heparin-based therapies and the initiation of alternative anticoagulants to mitigate the risk of thrombotic events. Advances in diagnostic tools, including the “4Ts” scoring system and laboratory assays such as ELISA and SRA, have improved the ability to accurately identify HIT and tailor treatment strategies accordingly.

Alternative anticoagulants, such as direct thrombin inhibitors and factor Xa inhibitors, have emerged as effective options for managing HIT-associated PTE, offering both safety and efficacy in preventing further thrombotic complications. The advent of direct oral anticoagulants (DOACs) has also expanded long-term management options, providing patients with safer and more convenient alternatives to traditional therapies like warfarin. Preventive strategies, including minimizing unnecessary heparin use, employing mechanical prophylaxis, and implementing rigorous screening protocols, are critical to reducing the incidence of HIT and improving patient outcomes.

Future directions should focus on further refining diagnostic criteria, enhancing access to advanced laboratory testing, and developing novel anticoagulants with superior safety profiles. Continued research is essential to address the unique challenges posed by HIT in PTE patients and to establish evidence-based guidelines that optimize outcomes for this high-risk population. Through a combination of early recognition, individualized treatment, and preventive measures, the morbidity and mortality associated with HIT in the context of PTE can be significantly reduced.

References

- Goldhaber SZ, Bounameaux H (2012) Pulmonary embolism and deep vein thrombosis. Lancet 379(9828): 1835-1846.
- Cines DB, Yarovoi SV, Zhi H, (2016) Heparin-induced thrombocytopenia: a comprehensive clinical review. J Am Coll Cardiol 67(21): 2519-2532.

3. Warkentin TE (2017) Heparin-induced thrombocytopenia. *Blood* 129(21): 2864-2872.
4. Selleng K, Selleng S, Greinacher A (2017) Heparin-induced thrombocytopenia in cardiac and noncardiac patients: epidemiology, pathophysiology, and management. *Thromb Haemost* 117(2): 199-207.
5. Rhodes GR, Dixon RH, Silver D (1973) Heparin-induced thrombocytopenia with thrombotic and hemorrhagic manifestation. *Surg Gynecol Obstet* 136: 409-416.
6. Fabris F, Luzzatto G, Steffan A, Cordiano I, Girolami A (2000) Pathophysiology of heparin-induced thrombocytopenia: clinical and diagnostic implications—a review. *Arch Pathol Lab Med* 124(11): 1657-1666.
7. Nicolas D, Nicolas S, Hodgens A, (2024) Heparin-Induced Thrombocytopenia. [Updated 2023 May 16]. In: StatPearls [Internet]. Treasure Island, FL: StatPearls.
8. Patriarcheas V, Pikoulas A, Kostis M, Charpidou A, Dimakakos E (2020) Heparin-induced thrombocytopenia: pathophysiology, diagnosis and management. *Cureus* 12(3): e7385.
9. Greinacher A, Farner B, Kroll H, Kohlmann T, Warkentin TE, et al. (2005) Clinical features of heparin-induced thrombocytopenia including risk factors for thrombosis. *Thromb Haemost*. 94(7): 132-135.
10. Picker SM, Gathof BS (2004) Pathophysiology, epidemiology, diagnosis and treatment of heparin-induced thrombocytopenia (HIT). *Eur J Med Res* 9(4): 180-185
11. Warkentin TE, Greinacher A (2004) Heparin-induced thrombocytopenia. *Lancet* 365(9466): 1467-1479.
12. Cuker A, Areppal GM, Chong BH (2018) American Society of Hematology 2018 guidelines for the management of venous thromboembolism: heparin-induced thrombocytopenia. *Blood Adv* 2(22): 3360-3392.
13. Warkentin TE, Sheppard JA, Moore JC (2008) Quantitative interpretation of optical density measurements using PF4-dependent enzyme-immunoassays. *J Thromb Haemost* 6(8): 1304-1312.
14. Warkentin TE, Greinacher A (2016) Laboratory testing for heparin-induced thrombocytopenia: immunoassay or functional assay? *Hemostasis and Thrombosis* 42(3): 244-252.
15. Linkins LA, Dans AL, Moores LK, (2012) Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest* 141(2 Suppl): e495S-e530S.
16. Warkentin TE, Greinacher A (2004) Heparin-induced thrombocytopenia. *Lancet* 365(9466): 1467-1479.
17. Linkins LA, Dans AL, Moores LK, (2012) Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest* 141(2 Suppl): e495S-e530S.
18. Cuker A, Areppal GM, Chong BH, (2018) American Society of Hematology 2018 guidelines for the management of venous thromboembolism: heparin-induced thrombocytopenia. *Blood Adv* 2(22): 3360-3392.
19. Warkentin TE, Kelton JG (1996) A 14-year study of heparin-induced thrombocytopenia. *Am J Med* 101(5): 502-507.
20. Greinacher A, Farner B, Kroll H (2005) Clinical features of heparin-induced thrombocytopenia including risk factors for thrombosis. *Thromb Haemost* 94(7): 132-135.
21. Areppal GM, Ortel TL (2006) Clinical practice. Heparin-induced thrombocytopenia. *N Engl J Med* 355(8): 809-817.
22. (2025) Lexicomp. Argatroban: Drug Information.
23. (2025) Drug Bank Online. Argatroban: Uses, interactions, mechanism of action. DrugBank.
24. (2025) Medscape. Acova (Argatroban) dosing, indications, interactions, adverse effects, and more. Medscape.
25. Klingele M, Enkel J, Speer T, (2020) Bleeding complications after cardiac surgery, before anticoagulation start, and then with Argatroban or heparin in the early postoperative setting. *J Cardiothorac Surg* 15(1): 27.
26. Jang IK, Gold HK, Ziskind AA, (1999) A multicenter, randomized study of Argatroban versus heparin as an adjunct to tissue plasminogen activator (TPA) in acute myocardial infarction: Myocardial Infarction with Novastan and TPA (MINT) study. *J Am Coll Cardiol*. 33(7): 1879-1885.
27. (2025) Medicine Net. Bivalirudin: Blood thinning uses, side effects, dosage. MedicineNet.
28. (2025) U.S. Food and Drug Administration. Highlights of prescribing information for Bivalirudin. FDA-Approved Drugs.
29. (2025) AC Forum Excellence. Clinical practice guidelines for Bivalirudin. AC Forum Excellence.
30. Taylor T, Campbell CT, Kelly B (2021) A review of Bivalirudin for pediatric and adult mechanical circulatory support. *Am J Cardiovasc Drugs*. 21(4): 395-409.
31. Bertorelli L, Martinelli I & Marcucci R (2021). Review of fondaparinux in HIT-related pulmonary thromboembolism. *Journal of Thrombosis and Haemostasis* 19(3): 1002-1010.
32. Kahale LA, Nakhla M, Toh CH (2021) Direct oral anticoagulants in patients with heparin-induced thrombocytopenia: A systematic review. *Thrombosis Journal* 19(1): 20.
33. Mackman N (2020) Role of factor Xa inhibitors in patients with heparin-induced thrombocytopenia. *Blood Reviews* 34(2): 100-105.
34. Mithoowani S, Siegal D (2024) DOACs: role of anti-Xa and drug level monitoring. *Hematology*. American Society of Hematology. Education Program 1: 178-185.
35. Cuker A, Areppal GM, Chong BH (2018) American Society of Hematology 2018 guidelines for the management of venous thromboembolism: heparin-induced thrombocytopenia. *Blood Adv* 2(22): 3360-3392.
36. Linkins LA, Dans AL, Moores LK (2012) Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest* 141(2 Suppl): e495S-e530S.
37. Warkentin TE, Kelton JG (1996) A 14-year study of heparin-induced thrombocytopenia. *Am J Med* 101(5): 502-507.
38. Ortel TL, Neumann I, Ageno W, (2020) American Society of Hematology 2020 guidelines for the management of venous thromboembolism: treatment of deep vein thrombosis and pulmonary embolism. *Blood Adv* 4(19): 4693-4738.

This work is licensed under Creative Commons Attribution 4.0 License
DOI: [10.19080/IJOPRS.2025.07.555719](https://doi.org/10.19080/IJOPRS.2025.07.555719)

Your next submission with Juniper Publishers
will reach you the below assets

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats
(Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission
<https://juniperpublishers.com/online-submission.php>