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Abstract

This contribution constitutes an advance from previous articles in Breast and Head and Neck cancer Radiotherapy BED modelling (Biological 
Effective Dose). Lung tumors Hyper fractionation TPO (Treatment Planning Optimization) is programmed with Pareto-Multi objective (PMO) 
Genetic Algorithms (GA) software. Artificial Intelligence methods (AI) with GA are applied on hyper fractionated TPO and detailed. Results 
comprise PMO-AI imaging process sequences and numerical values of PMO Lung cancer TPO parameters. Further results prove PMO-GA BED 
model both with Pareto-Optimal Front detailed graphics, charts, and numerical dose fractionation datasets. Solutions for improved and advanced 
RT Lung cancer TPO, and tumors in general for Fractional-dose photon dose delivery are explained. Mathematical Medical Physics analysis and 
a few numerical comparisons to previous published research for Breast and Head and Neck cancer PMO with Evolutionary Artificial Intelligence 
are presented.  

Keywords: Pareto-multi objective optimization; Mathematical methods; Biological models; Radiation therapy; Initial tumor clonogenes number population; 
Effective tumor population clonogenic number; Linear quadratic model; Integral equation; Tumor control probability; Normal tissue complications probability; 
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Introduction
Formerly, biological models BED-TPO simulations with AI-GA 

were proven in a series recent publication for Head and Neck and 
Breast tumors [1-23]. This article shows modelling advances from 
those methods/results towards one of the most epidemiologically 
frequent in male and female cancer patients actually, namely 
lung tumors. Artificial Intelligence with Genetic Algorithms in 
engineering software is applied on radiotherapy BED model for 
Lung cancer. The objective of this research is further development, 
programming, obtain two types of AI-GA 2D Graphics-numerical 
Optimization, and extensive dataset results for BED model hyper 
fractionated TPO protocol in Lung cancer [24]. Therefore, the 
focus of the study is getting accurate and software functionality 

optimization of BED model for lung cancer hyper fractionated 
RT treatment. Epidemiologically, the importance of lung cancer 
screening among smokers and individuals with risk factors, has 
been proven recently. The reason is that survival rate after 5 years 
among early-stage diagnosed lung tumors is significantly higher 
[25-38]. Surgical resection of lung tumors at stage I (T1–2, N0) 
NSCLC yields satisfying outcome results with 5-year survival rates 
of 60–70%, and remains at present the golden standard in this 
population. After resection, radiotherapy is optional.

Lung tumors are a heterogeneous type of cancer. Their 
incidence and prevalence are statistically among the highest 
percent of all tumors and constitute the highest deaths cancer 
rate at present. In general, [96], Non-Small-Cells-Lung carcinoma 
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has a prevalence of approximately 85% of all lung tumors, while 
Small-Cells-Lung carcinoma shows about 15% of prevalence. In 
addition, lung and breast cancer show be the highest incidence 
in brain metastases [39-45]. For example, 234,000 Primary Lung 
cancer cases in USA in 2018 with 154,050 deaths. In 1990 the 
incidence peak was [70 / 100,000 population], in 2018 [57 / 
100,000 population] . This specific decrease of incidence in that 
developed country is probably due to healthier population habits 
related to tobacco consumption and contact with other toxic 
substances/chemicals. The most important oncological causal 
factor for lung cancer is proven be tobacco consumption, even 
in passive smokers. However, further pathogenesis factors are 
mainly chemical, from the external media intake/contact. Namely, 
radon gas, passive smoking, prior radiation from any radiation 
source [39-40,46-80], inhaled chemicals (polycyclic aromatic 
hydrocarbons), heavy metal inhaled particles and/or micro-
nano particles. Among previous diseases, for instance pulmonary 
fibrosis. If any potential patient is smoker and at the same time 
is in contact with carcinogenetic chemicals, the ontogenetic 
synergism factor increases the probability of lung cancer. 
Therefore, although the tobacco consumption is decreasing in 
developed countries, it does not happen so in underdeveloped 
ones. This has caused an incidence/prevalence social-geographic-
pathology rate displacement towards those countries. In addition, 
when smoking, the oral cavity can accumulate tobacco and alcohol 
as ontogenetical factors. This pathogenesis can cause concomitant 
diseases associated to the main lung tumor [81]. 

The radiosensitivity of tumor cells for optimal RT treatment 
has two main factors to be considered [82-109], namely, alpha 
and Betha coefficients and repopulation (Tumor Cells Intrinsic 
Radiosensitivity). From about 4 days after dose fraction irradiation, 
the fraction of clonogenic increases almost exponentially. Intrinsic 
radio sensibility is a crucial factor for Biological Effective Dose 
because the model depends on alpha and betha coefficients. 
The mathematical reason is that the exponential for survival 
fraction for radiobiological models is modified by these important 
parameters (Algorithm 2), [23]. According to [109], the alpha 
values vary [0.72,0.52], and the beta one’s change [0.047,0.034], 
related to intermediate plating-delayed plating. In other words, 
RT schedule and patient personalized treatment for lung tumors 
should consider intrinsic radiosensitivity both for tumoral 
and normal tissues, when treatment planning optimization is 
calculated (NTCP, normal tissues complications probability 
and TCP, Tumor Control Probability constitute essential 
complementary probabilistic parameters when designing TPO).

The influence of oxygen model is a factor to be taken 
into account when using BED model. The main reason is the 
oxygenation factor on the numerical magnitude of alpha and 
betha parameters. A basic model is as follows, where, ( αo , βo ) and 
( αh , βh ) are the radio sensitivities under oxygenated and hypoxic 
conditions respectively (Malinen et al. 2006) :

αh =αo /OER and βh =βo /OER2 

where,

OER : oxygen enhancement ratio.

αo : Alpha magnitude in oxygenation.

αh : Alpha magnitude in hypoxygenation.

βo : Betha magnitude in oxygenation.

βh : Betha magnitude in hypoxygenation.

 This distribution of hypoxia has also been used in previous 
modelling studies as a consequence the proportion of the total 
initial number of colognes. This proportion is predicted by 
probability theory. The influence of oxygen is linked to models of 
alpha and betha parameters related to the oxygen enhancement 
ratio (OER), whose formula is large and not set in the paper. The 
most important is: If OER is higher than 1, alpha-hypoxia and 
betha-hypoxia decrease, then the Survival Fraction Equation 
negative exponential because alpha-oxygenated and Betha - 
oxygenated increase. Therefore, in general, oxygenated cells 
are more radiosensitive. Therefore, to get a survival fraction in 
oxygenated cells requires less radiation magnitude in general. In 
brief, the α-hypoxia and β-hypoxia parameters for radio sensitivity 
depend on PO2, and this dependence can be described by the 
oxygen enhancement ratio (OER). In this classical oxygenation-
radiosensitivity model the most important formulas are (Malinen 
et al. 2006).

αh =αo /OER and βh =βo /OER2 

Where, (αo , βo ) and (αh , βh ) are the radio sensitivities under 
oxygenated and hypoxic conditions respectively. 

Today, biomarkers are getting an important role in order 
to predict the survival time, optimal chemotherapy, and both 
characteristics at the same time. Table 1 shows a biomarkers 
classification into P-Biomarkers (Biomarkers for Prognosis), 
T-Biomarkers (Biomarkers for Optimal Treatment), and 
H-Biomarkers (Hybrid Biomarkers Group). General Biomarkers 
classification. Nano-Biomarkers is an open research field with 
potential perspectives in future. Just remark that Biomarkers are 
is extent, diverse and difficult as involves biochemistry, molecular 
biology, medicine-pharmacology, medical physiology and several 
other fields. Therefore, this Table is simple based on Author’s 
proposal classification. Hence, Biomarkers can be classified into 
two groups. Namely, T-Biomarkers, those specific for treatment, 
and P-biomarkers, those specific for prognosis. 

In recent years, the TNM stage taxonomy was improved in 
the seventh edition of the staging guidelines to set a combination 
of TNM parameters with survival outcomes rates and treatment 
optimal choices among stages [refs]. Then, interrelated with TNM 
stages, mainly the survival rate, and prognosis rate, location, types 
of selected treatment strategies, divided into in stages I, II, III and 
IV are nowadays considered complementary. TNM classification 
has also defined survival rates for every stage. For example, T1a 
and IA show get the approximately equal survival rate after 5 years 
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of about 50%. The interrelation of both criteria can be considered 
complex, since survival outcomes, surgery resection indication, 
RT treatment, chemotherapy and immunotherapy are linked to 
several stages of both taxonomies. For early stage : CT screening 
proven e useful. Low dose CT was proven be useful in screening . 
Screenings to get an early-stage diagnosis, and obtain an optimal 
treatment, are focused mainly on selected population smokers 
and high-risk professions risk factors (such as toxic chemicals). 
TNM classification complemented with histologic grade is used 
today for precise diagnosis-stage of lung tumors. For example, TIa 
stage shows be the best survival rate after 5 years, 70%, while IV 
has a 10% .Pleural invasion, particularly the presence of tumor at 
the surface of the visceral pleura, has been an indicator of a poor 
prognosis. 

Since radiotherapy treatment is indicated in all TNM lung 
cancer stages, it is possible to set a practical classification for 
specific lung tumor RT treatment, [author’s proposal] . PTV Type 
1 is a clinical planning for T and N stages located within thorax or 
very close into thorax to lungs. PTV Type 2 is the RT planning for 
N and M stages which are not close to primary lung tumor, such 
as, upper nodules at cervical-neck level, distant axile nodules or 
brain metastases. Radiation therapy treatment is applied at all 
stages of lung cancer. Even at M stage, the brain metastases are 
treated with radiation, and when their diameter are about 5cm, 
radiosurgery is indicated. Lung radiation has special anatomical 
and physiological constraints compared to other organs. Some 
of them are lung density inhomogeneity, which is a synergic 
difficulty with PTV volume changes with lung breath dynamics. 
During radiation delivery, the lung tumor target borders could 
vary about 2-3cm, and at the same time that implied a dynamic 
density PTV change. 

Radiotherapy biological models come from initial 
radiobiological theoretical and experimental studies [75,87-88,91]. 
Radiobiological interaction with normal tissues was researched 
for radioprotection [76-80]. Then, two practical branches 
emerged simultaneously from the equivalent mathematical 
modelling investigation. Namely, to use radiobiology knowledge 
for radiation protection of normal tissues, and conversely to set 
radiobiological models to approach/improve the cell-kill method 
in tumoral tissues [22-25,89-91]. From this branch-duality, 
a practical swapping of equivalent parameters emerged for 
practical/easier research and clinical-biological applications. For 
instance [α,β] typical Linear Quadratic models parameters. These 
mathematical models both for normal and tumoral tissues were 
usually based on exponentials whose power-functions depend 
on a linear/nonlinear equation of radiation dose variable with a 
number of experimentally validated coefficients/constants [22-
25,76-80,87- 91,92-96]. 

The previous works and novelty in this artificial intelligence 
method for hyperfractionation precision-schedule method, 
[91,98,99,105], showed accurate results for survival fractions, 
3D Graphical Optimization charts, and a database of numerical 

results in other type of cancer, e. g. , prostate. To reach the 
research objectives in this study, nonlinear GA-PMO engineering 
software was programs for PMO-BED Lung cancer basic model. 
The implemented specific software got to get going towards 
improvements in GA programming and TPO radiotherapy 
optimization for BED model hyperfractionated dose delivery 
protocol [91]. 

Therefore, the innovation of this contribution shows a 
number of aspects. The first one is the application of Pareto-
Multi objective Optimization methods for lung cancer with in 
vivo dataset. The second one is the 3D Isodose lines in TPO with 
new imaging results, based on previous recognized publications 
[91,98,99,105]. The third is also the presentation of 3D Isodose 
zones improved imaging-processing results based on another 
recent article. Previous work with these methods belong to 
prostate tumors and lung ones [91,98,99,105]. The primary 
algorithms and software results for these Pareto-Multi objective 
Optimization were initially developed in these contributions.

Consequently, the innovation of this study is to carry out AI-
GA programming for lung cancer hyperfractionation TPO in BED 
models. Several simulations with Genetic Algorithms are shown in 
2D charts and numerical results. The algorithm for multi objective 
pareto optimization is detailed and programmed. Results 
comprise GA simulations for two types of parameters-BED models 
according to literature [75,87,88,91]. MATLAB system was used 
for GA programming with acceptable graphical processing images 
and numerical data findings. Succinctly, advanced research from 
former Nonlinear Pareto-Multi objective GA optimization was 
got for BED models in Lung cancer [87,88,91]. Applications for 
radiotherapy TPO, dose delivery hyperfractionation schedule 
future biological model advances in modern RT are also presented. 

Mathematical Algorithms and Software Engineering 
Methods

The model set in software patterns is the basic BED one [20-
25,89]. There is a number of variations/simplifications of this 
model in the literature [20-25,39,40,75,85,91]. One reason is that 
the radiobiological parameters determination vary according to 
experimental radiobiology data findings [20-25]. Therefore, those 
simplified BED models take statistical values of, for example, 
Potential and others. In this section the algorithm is explained, 
at Results one, the Pareto-Multi objective Optimization method 
parameters to put forward sharply the graphs are detailed. 
Besides, in biological models TPO applications, there is a medical 
physics controversy/discussion about Hyperfractionation versus 
Hypofractionation dose TPO delivery. That point is beyond 
the scope of this study since the objective of the research is AI-
GA optimization of hyperfractionation dose. In this section the 
algorithms are explained, and at results one, the Pareto-Multi 
objective Optimization method parameters to put forward sharply 
the graphs are detailed. However, for sharp learning, Table 2 
shows the main simplified concepts of Genetic Algorithms applied 
on Pareto-Multi objective Optimization. 
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It is very frequent the application of inverse least square 
techniques for RT inverse planning. Genetic algorithms constitute 
a more modern method, and GA Pareto-Multi objective has 
also been applied recently [58,67]. The genetic algorithms 
(GA) optimization method, closely linked to modern artificial 
intelligence, has experienced a recent increase in the use of its 
optimization applications/variants [ 58,67]. Although the applied 
GA method in this contribution is the standard, each one of the GA 
variants has its advantages and disadvantages [10,11]. Basically, 
GA is a stochastic mixed method similar to Monte Carlo but 
simpler/faster in general. That is, in plain language, successive 
generations of values (parameters) are computed by the software 
until the optimal parameters figures are obtained. Actually, 
the multiple combinations of random/stochastic methods, GA 
variants, and modern programming techniques, offer an extensive 
choice of options for the optimization designer. In this article, 
the parameters, namely, are, dose fraction magnitude, number of 
fractions, and total treatment time.

 Therefore, here GA usually selects a randomly large number 
of successive generations of dose fractions number, fraction 
magnitude, and total treatment time, for the objective function 
maxima accuracy subject to constraints-desired intervals for dose 
fractions number, fraction magnitude, and total treatment time. 
For every generation, three types of choices are applied for the OF. 
Namely, elite selection, after-mutations, and cross-over changes 
in the variables’ values. GA program stops when the number 
of generations subject to the constrains and/or the numerical 

tolerance for a generation is reached even if that solution is a local 
or global minimum. In other words, speaking roughly, GA stops 
when the best-possible and desired data for TPO that is needed 
is obtained. 

Pareto-Multi objective method is a specific optimization one, 
and here is implemented with GA. This method, for example, is 
extensively used also in economics to obtain optimal-comparative 
values for two options (actually 3 ones is possible). Namely, 
Objective 1 and Objective 2. The method of multi objective 
optimization for simple constraints begin with setting an 
objective function for the two different objectives with this type 
of functions: 

1 2

,
( ) ( ( ), ( ),... ( )),

 to,
( ) 0,  i=1,...M

N

i

Minimize
F x f x f x f x
subject
K x for

=

≥

   



Where,

F(x) : Main function to be optimized.

fi( x ) : Every function of same variables ( x ).

Ki(x) : Constraints functions such as in general N ≠ M .

Algorithm 1- The basic concepts of constrained Multi objective 
Optimization. Then, two alternatives (in paper total dose 50-55 Gy 
for Pareto1, and 60-65 for Pareto2, and for second simulation, 60 
Gy Pareto1 and 65 Gy Pareto2, see all Table 1 & 2) are set within 
a built OF.

Table 1: Biomarkers Author’s proposal of modern classification based on [101,108,109].

Biomarkers Classification for Lung Tumor Radiotherapy Treatment [Author’s proposal]

Biomarker Type and Usage Clinical Applications Functionality Radio-Biochemical Details and 
Research

P-Biomarker (Main Function 
Prognosis Biomarker)

Prediction of approximate survival 
time subject to optimal treatment. 

There are a large variety of 
techniques, for instance: Forward 

and Reverse Phase Protein 
Arrays, or Antibody and Antibody 

Detection—Based Assays.

Prediction for approximate 
survival based on specific tumor 
cell histology, and according to 

the relation histology- efficacy of 
drugs. Drug failure investigation 

utility.

The research in Biomarkers has 
experienced significant advances 
in recent years. Research clinical 
trial example: investigation data 

show that patient survival time in 
PD L1 positive patients who are 

treated with combined anti CTLA 
4 and anti PD 1 is not superior 

to nivolumab monotherapy. That 
implied that was necessary further 

research. This clinical trial study 
area is difficult

T-Biomarker ( Main Function 
Treatment Biomarker)

Selection of approximate 
optimal choice for treatment. 

Examples: dual-target recognition 
technologies.

Optimization of the best effective 
drug type for personalized tumor 

at every patient. Detection of 
optimal chemical-drug target 
and pharmacokinetics. Drug 

failure patient personalization 
investigation. Target 

characterization, or Dual target.

HSP90a is an inducible molecular 
chaperone that functions as 
a homodimer. Research field 

involves physics, nuclear physics, 
biology, and chemistry.

H-Biomarker (Hybrid Function 
Biomarker)

Both prediction of survival time 
and optimal treatment

Specially those biomarkers that 
can make both functions, namely, 

prediction and treatment, or one of 
them better than the other.

Nano-Biomarkers actually in 
investigation can modify the 
immune cells and efficacy of 

chemical-drugs over cells tumor
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Table 2: Genetic Algorithms applied on Pareto-Multiobjective Optimization simple explanation.

Simplification of Genetic Algorithms Method Applied to Pareto-Multi Objective Optimization

Parameter Utility Mathematical Significance

Number of Generations

To obtain the best results with the more efficacious 
generations number. The program is selecting the most 
accurate results (functions) after every generation, and 

discarding those (functions) whose errors are higher than 
constraints.

In general, the error decreases when reaching 
a prime number of generations, after that, the 

error differences are not significant

Best Fit Generation The program finally shows those generations (functions) 
that match the constraints better.

With Pareto-Multiobjective, the program shows 
two parameters at 2D chart: namely, best fit for 

pareto1 and best fit for pareto2

Pareto Front

The GA program works with two different functions, pareto1 
and pareto2. That is presented in a 2D graph and the 

software-researcher can find the optimal points that satisfies 
better the objectives for both at the same mathematical 

parameters.

The most important when GA is applied on 
Multiobjective Optimization. Along the pareto 
front points given in 2D graph, the planner can 

select the best combination for both pareto 
function constraints.

Distance Among Individuals and 
Fitness of Each Individual

Along successive generations, they show how the individuals 
(values of pareto1 and pareto2) satisfy the constraints and 

algorithm. Then there are two parameters, accuracy for 
each and every individual independently, and comparative 

precision among individuals of every generation.

It gives the mathematical differences among 
successive generations. If it is not high, the 

meaning is that the method has got acceptable 
results.

First we get the bed model as it was done for head and 
neck cancer in previous publications

1

effective

Chebyshev L  optimization for,

BED  = kd 1 ...

(2)... ;Treatment Delay

Potential

d

T TLn
T

β
α

α

× = −  
− 

−  
 

Second Step: Setting This Model In L1 Objective Function: 
Therefore, the Pareto-Multi objective Optimization basic BED 
Effective created in this contribution algorithm-model was set 
in software, [91]. Parameters are detailed in Algorithm 1 [85-
91]. Two different PMO optimization programming series are 
presented with different parameter intervals magnitudes, Table 1 
& 2. This BED model constitutes the fundamentals for fractionate 
radiotherapy, although there are variations among authors [22-
25]. Formulation is based on previous studies computational 
software [1-21,85-91]. The algorithm that was set, with Chebyshev 
L1 norm, [Algorithm 1], reads,

1

1

1

Chebyshev L  Optimization,
for i=1,2...minimize pareto,
DOSE |   with,

1 ...

(2)... ;

effective L

effective

Treatment Delay

Potential

BED

dBED k d

T TLn
T

β
α

α

−

× = × × + −  
− 

− ×  
 Where,

BED : The basic algorithm for Biological Effective Dose initially 
developed [22-25,89].

K : Optimal Number of fractions for hyperfractionated TPO. 
Optimization parameter [22-25,89].

D : Optimal Dose magnitude for every fraction. Optimization 
Parameter [ Gy ]. [22-25,89].

A : The basic algorithm constant for Biological Effective Dose 
models. Radiobiological experimental parameter. [ Gy-1 ]. [22-
25,89].

Β : The basic algorithm constant for Biological Effective Dose 
models. Radiobiological experimental parameter . [ Gy-2 ]. It is 
very usual to set in biological models [ α / β in Gy].

TTreatment : The overall TPO time. This parameter varies 
according to authors’ and institutions/hospitals criteria. [22-
25,89].

TDelay : The overall TPO time delay for colognes re-activation. 
This parameter varies according to authors’ experimental 
research.

TPotential : The potential time delay for tumor cell duplication. 
This parameter varies according to authors’ experimental-
theoretical research.

DOSE : The dose magnitudes for lung cancer simulation 
algorithm for Biological Effective Dose [22-25,89]. Software 
patterns were calculated around intervals lung DOSE ϵ [50,65] Gy.

Algorithm 2- Lung cancer PMO algorithm [1-21,85-88] set in 
software loops, patterns, and arrays for AI-GA. The parameters 
interval-magnitudes for optimization are detailed in Table 1 
& 2. It is an improvement from a series of previous research in 
radiotherapy PMO-AI for Breast and Head and Neck tumors 
[75,87-88,91].

http://dx.doi.org/10.19080/IJOPRS.2025.08.555728


International Journal of Pulmonary & Respiratory Sciences

How to cite this article: Francisco Casesnoves. Radiotherapy Lung Cancer Fractionated Biological Effective Dose Optimization with Genetic Algorithm 
Pareto-Multi objective Method - Part II. Int J Pul & Res Sci. 2025; 8(1): 555728. DOI:  10.19080/IJOPRS.2025.07.555728006

Pareto-Multi objective Dataset For Lung Cancer 
Optimization: In the following, Table 2 shows the first simulation 
series according to data from [89]. Table 3 & 4 details dataset 

for second simulations series with experimental-theoretical 
magnitudes from [22-25]. In programming task, several trials 
around these values were done.

Table 3: The first series simulations were done with approximate numerical-experimental data from several authors, 
mainly [89]. These parameter intervals are different from second series simulations.

Genetic Algorithm Artificial Intelligence Optimization Parameter Interval for Lung Tumors First Optimization

Parameters with Programming Intervals 
[First Optimization with [89] Criterion] Magnitude Interval Additional

Dose fractions number Several trials [30, 40], [27, 32] Schedule in literature [1-22-25,74-89,91], 
references for all this column.

Dose fraction magnitude Several trials [ 1.5, 2.5], [ 1.3, 1.7], Gy Schedule in literature. Set with intervals according 
to [89] criteria.

TTreatment Several trials [25,36],[30,40] Days

Schedule in literature. Set with intervals according 
to [89] criteria. The RT treatment [22-25] varies 

according to weekends, vacations, secondary effects 
in patient, circumstances, etc.

TDelay
[15,20] Different from second simulation 

series
Schedule in literature. Set with intervals according 

to [89] criteria.

TPotential [programming interval] [4.5, 5.5] At model denominator and 
different from second simulation series

Schedule in literature. Set with intervals according 
to [89] criteria.

Dose interval in Objective Function 50-55Gy for Pareto function 1

60-65Gy for Pareto function 2
Schedule in literature. Set with two total 

dose Pareto Functions according to [87-89, 
91] different criteria.

α [0.1, 0.6] Gy-1 From [89]

β
0.035 Gy-2

Different from second simulations
From [89]

Table 4: The second series simulations were done with approximate numerical-experimental data from several 
authors, mainly [22-25]. These parameter intervals are different from first series simulations.

Genetic Algorithm Artificial Intelligence Optimization Parameter Interval for Lung Tumors Second Optimization

Parameter [Second Optimization with 
Refs [22-25,83] and Related Author’s 
Radiotherapy Text Books] Criteria]

Magnitude Interval Additional

Dose fraction number [25, 35] and [20, 30] Schedule in literature [1-22-25,74-89,91-96] references 
applicable for all this column.

Dose fraction magnitude [ 2.25, 3.25] Gy Schedule in literature. Set with intervals according to [89] 
criteria.

TTreatment [30,32] Days

Schedule in literature. Set with intervals according to [22-
25] criteria. The RT treatment [22-25] varies according 

to weekends, vacations, secondary effects in patient, 
circumstances, etc.

TDelay [21] Days standard Schedule in literature. Set with intervals according to [22-25] 
criteria.

TPotential [ programming interval] [3.30, 4.10] Days Schedule in literature. Set with intervals according to [22-25] 
criteria.

Dose interval in Objective Function
60Gy for Pareto function 1 

65Gy for Pareto function 2
Schedule in literature. Set with two total dose Pareto 
Functions according to [87-89, 91] different criteria.

α [0.1, 0.6] Gy-1 From [22-25]

β 0.0581Gy-2 From [22-25]

Results

Results are 2D AI-GA graphical and numerical. As shown in 
Table 2, the most important GA parameters are presented and 

explained. That is, Best Fit, Number of Generations and Pareto-
Front. In Pareto-Front, the optimal point was selected to get 
the best results, Figure 1-5. Figure 6 & 7 show the histograms 
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score data results, that is, the difference between the pareto1 
and pareto2 scores. For first simulations, Figure 1-4 show PMO 
results-Figure 3.1 is a variant of Figure 3. For the second group, 
2D imaging processing are Figure 5-7. Table 3 & 4 present 
details of both numerical PMO optimization results. The most 
important to validate the results are those ones that show the 
Pareto Front. Average distance among generation individuals, 
score histograms, stopping criteria, or fitness for every individual, 

are also significant. All the complementary details and shown in 
additional 2D charts for first and second AI-GA PMO optimization. 
Maximum number of generations programmed is 300. Some other 
generations number to compare were selected as 100, General 
running time range for all images and both optimization trials is 
about 2-6 minutes. Numerical results, Table 3 & 4, resume for PMO 
in BED model. Dose fraction magnitudes, number of fractions and 
optimal total RT treatment values are explained in Table 3 & 4. 

Figure 1: First optimization Multifunctional AI-GA 2D graph. The Pareto-Front is the most important graph. When it shows low residuals 
the GA optimization is acceptable for Algorithm1. In this study both f 1 and f 2 show low 1.5 and 3.5 residuals. The number of points on 
the Pareto front was: 18. The number of generations is 300. Note the precision reached: pareto1 and pareto2 differ in approximately 1 

Gy. Average distance among individuals is approximately lower than 0.5, and fitness of every individual is acceptable.

Figure 2: Stopping criteria for first optimization showing 100% criteria met. At Y axis generation and time.
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Figure 3: This is a significant 2D GA graph. Most of average distance magnitude in lower than 2 from 50th generation on. The number 
of points on the Pareto front was: 18. The number of generations is 300.

Figure 3.1: Refinement of first optimization GA 2D graph from Figure 3. Average distance magnitude is approximately lower than 0.5 
from 150th generation on.

Figure 4: First optimization Multifunctional GA 2D graph. It comprises rank histograms, note the error decreasing gradient. Fitness 
of each individual, inset, at second graph. Average distance at lowest image. All parameters show be precise, especially the rank 

histograms.
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Figure 5: Second optimization Multifunctional AI-GA 2D graph. The Pareto-Front is the most important graph. When it shows low 
residuals the GA optimization is acceptable for Algorithm1. In this study both f 1 and f 2 show lower than 3 residuals. The number of 

points on the Pareto front was: 18. The number of generations is 300. Average distance is lower than 1, about 0.5 from 50th generation 
on. One option for a balanced pareto-choice with approximate equal residuals for both pareto functions is marked inset with green 

arrows. In this second simulation pareto1 and pareto2 differences is lower than the first one.

Figure 6: Stopping criteria for second optimization showing 100% criteria met. At Y axis generation and time. Lower chart shows 
distance among individuals, in general lower than 0.1.

Figure 7: Second optimization Score Histogram range.
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GA 2D results

First simulation 2D GA results are shown in Figure 1-4. The 
data for first and second simulation is set at Table 3 & 4. Second 
one is presented in Figure 5-8. There are simple image processing 

charts and multifunctional images also. In Figure 1, the most 
important is the Pareto-Front first chart. Complementary, the 
Distance among individuals and the fitness of each individual is 
shown, concepts in Table 2.

Figure 8: This is the most pareto-multi objective significant graph given by software when PMO is programmed. Note that Objective 2 
shows be better than Objective 2 for Head and Neck tumors AI-GA optimization [ 87-88 ]. The number of points on the Pareto front was: 

18. The number of generations is 300-800.

GA Numerical results

This section shows a brief of numerical dataset corresponding 
to imaging processing AI-GA results, Table 4 & 5. It is useful to 
compare the dose per fraction and number of fractions among all 
optimal results.

First simulation numerical results

The first simulation results are shown in Table 5. The second 
in Table 6. Main comparison should be among dose per fraction 
and number of fractions. Results are according to literature and 
recent advances several hospital data.

Table 5: PMO Artificial Intelligence with GA optimization first simulation series numerical results. Numerical results 
intervals, after several trials, match approximately [89] data.

Genetic Algorithm Artificial Intelligence Optimization Numerical Results for Lung Tumors First Optimization

Parameters with Programming Intervals 
[ First Optimization with [89] Criterion] Magnitude Interval Additional

Dose optimal fraction number [ 27, 31] Fractions Usual protocol in literature [1-21,74-89].

Dose fraction optimal magnitude [1.60, 1.90] Gy Usual protocol in literature [1-21,74-89]. Set with intervals 
according to different criteria.

TTreatment
[30,33] Days Different from second 

simulations

Usual protocol in literature [1-21,74-89]. Set with intervals 
according to different criteria. The RT treatment varies 

according to weekends breaks, secondary effects, patient 
circumstances, etc.

TDelay [12,16] Days From [89] Usual protocol in literature [1-21,74-89]. Set with intervals 
according to different criteria.

TPotential [programming interval] [4.5, 5.5] Different from second 
simulation series

Usual protocol in literature [1-21,74-89]. Set with intervals 
according to different criteria.

Dose interval in Objective Function
58Gy for Pareto function 1 

65Gy for Pareto function 2
Usual protocol in literature [1-21,74-89]. Set with two total dose 

Pareto Functions according to different criteria.

α [0.1, 0.6] Gy-1 Set in arrays [0.35 ± 
0.25] Like second simulations From [89]

β 0.035Gy-2 Set in arrays From [89]

Table 6: Brief of PMO Artificial Intelligence with GA optimization second simulations series numerical results in Head 
and Neck tumors for advanced TPO. Dataset for software [22-25].

Genetic Algorithm Artificial Intelligence Optimization Numerical Results for Lung Tumors Second Optimization

Parameter [Second Optimization with 
[25,83] and Related Author’s Radiotherapy 

Text Books criteria]
Magnitude Interval Additional

Dose fraction number [19, 22] Usual protocol in literature [1-21,74-86].

Dose fraction magnitude [2.0, 2.5] Gy Usual protocol in literature [1-21,74-86]. Set with 
intervals according to different criteria.
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TTreatment [30,32] Days

Usual protocol in literature [1-21,74-86]. Set with 
intervals according to different criteria. The RT 
treatment varies according to weekends breaks, 

secondary effects, patient circumstances, etc.

TDelay [22,35] Days Usual protocol in literature [1-21,74-86]. Set with 
intervals according to different criteria.

TPotential [programming interval] [3.30, 4.10] Days Usual protocol in literature [1-21,74-86]. Set with 
intervals according to different criteria.

Dose interval in Objective Function
60Gy for Pareto F function 1 

65Gy for Pareto F function 2

Usual protocol in literature [1-21,74-86]. Set with 
two total dose Pareto Functions according to different 

criteria.

α [0.1, 0.6] Gy-1 From [25,83] and related authors’ radiotherapy text 
books

β 0.0581Gy-2 From [25,83] and related authors’ radiotherapy text 
books

Comparative results with head and neck cancer ai-ga 
optimization research

AI-GA comparison with the same method for Head and 
Neck tumors, Figure 8 & 9. These images included here are 
newly-developed different imaging processing PMO results than 
obtained in [87]. The most significant to check the results are 

the Pareto Front images, Figure 8. Figure 9 is a multifunctional 
image AI-GA processing for Head and Neck cancer RT treatment 
based on [87,91] software. Distance among individuals, score 
histograms, and fitness of every individual are shown, Figure 9. 
Maximum number of generations selected was 300-800. Running 
time for Figure 8 is shorten than Figure 9, both processes is from 
2 to 6 minutes.

Figure 9: Head and Neck tumors Pareto-Optimization Multifunctional GA 2D graph. Developed with software for [87-88]. It shows 
Distance among individuals, Fitness of every individual, and Score Histogram. Running time is about 3-4 minutes.

Discussion and Conclusion

The objectives of the study were graphical and numerical 
optimization of standard BED model for modern Lung cancer 
TPO. The method applied was Artificial intelligence with GA 
Pareto-Multi objective Optimization. It is the same technique 
from previous research with BED model for Breast and Head 
and Neck tumors TPO. Optimization was performed according 
to two authors’ biological BED models criteria [22-25, 87-
89,91]. Therefore, it constitutes a step forward to apply GA for 
Lung cancer TPO advances. The mathematical method applied 

is Pareto-Multi objective Optimization. The advantage of 2D 
Multi objective Optimization compared to common one is to 
obtain at least two pareto functions, and the optimal choice can 
be got selecting the most convenient data from objective 1 and 
objective 2 graphs (Figure 1,8,9). Compared to Tikhonov Inverse 
Optimization method, that was applied in previous publications, 
that constitutes an advantage [21,75]. However, classical 
Tikhonov methods can be considered precise and useful. A useful-
comprehensive simplification of the GA-PMO method was shown 
in Table 2. Complementary, and specifically for lung tumors, a 
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Biomarkers Author’s proposal of modern classification based on 
[101,108,109]. 

The BED model algorithm that was selected is the standard 
one of the first generation. For hyperfractionation as a first step 
research choice [25,83]. The numerical difference has not been 
checked implementing further generations of BED algorithms. 
However, as a tentative calculus given the numerical data 
obtained, it seems that the numerical differences could not differ 
significantly from the first-generation model function. The L1 
norm selected (Tikhonov L1 norm) was applied for programming 
simplification. In previous articles, it was found that software 
implementation of (Tikhonov L2) norm did not show substantial 
differences with L1 norm. Besides, the design of the program 
for L2 norm results be more complicated and does not bring 
important variances. Other features that the implementation of 
the L2 norm implies a longer running time, which is an added 
difficulty. First simulation shows higher number of fractions, and 
lower magnitude of dose per fraction than the second simulation, 
Table 5 & 6.

Factually, and according to recent literature [101-109], 
GA-PMO method is more widely used compared to Inverse 
Optimization with Least Squares algorithm, for example, [11-16]. 
Recent optimization methods tend to apply/use more frequently 
evolutionary algorithms and also the variants and improved GA 
algorithms based on successive method-generations. 3D-imaging 
Interior Optimization (the basic) was implemented, e.g., for 
superconductors modelling with acceptable numerical results in 
a series of publications, for example. Although 3D-IO technique is 
essentially a numerical imaging-processing one, the 2D GA-PMO 
method gives also acceptable information and dataset for the 
approached problem. 

The software that was designed for the research is based 
on previous studies for applications of GA standard method . 
The implemented dataset is founded on the lung cancer current 
protocol doses and do not differ in magnitude order along the 
literature. As an example, these calculations boundaries and 
magnitude orders were modernly confirmed . Therefore, the 
constraints and boundaries set in programming patterns can be 
considered acceptable. In terms of programming running time, 
it was checked that the approximate average time to obtain a 
simple GA chart was about 2 minutes, provided that number of 
generations not be higher than (200, 300). If the generations 
number increases from 150, approximately, the running time 
could reach 3 or 4 minutes. The Multi graphics take an average of 
2 minutes more than the simple ones.

The numerical data obtained matches the average literature 
dataset [99], with very low differences. Specially the recent 
protocols in Radiosurgery [100], coincide with the dosimetry 
results. When number of generations is increased, no significant 
changes are observed in magnitude orders for Pareto 1 and 2 
Multi objective Functions. The objective of the study was not 
discussed between hyperfractionation versus hypofractionation. 

However, according to results it is possible to comment some 
classical ideas about this controversial matter. There are 
Hyperfractionation, Hypofractionation, Hybrid Schedule and 
Accelerated Hyperfractionation dose delivery schedules. Hospital 
institutions differ in technical facilities, staff specialization, and 
treatment time avail-able, therefore this question adds another 
influential factor for those optimal clinical-radiation oncology 
decisions. 

Author’s criterion is that all of them should be treated/
considered in function of personalized RT treatment, and the 
most important idea is that all of them depend on multiple 
factors [22-25,87-89,91]. one im-portent factor is the magnitude 
order of the coefficients alpha and betha for tumoral tissue at 
every patient, if time and hospital facilities can determine those. 
Hyperfractionation considers that the higher recovery capacity 
of late-responding normal tissues, in practical terms NTCP 
magnitude, is higher when contrasted with tumor-tissue. If the 
response of normal tissues is low, it implies that the quotient ( 
alpha/betha ) has a lower magnitude order) . However, the more 
fractions get the schedule, the higher changes of this quotient is 
observed. For comparative considerations between Hyper and 
Hypofractionation. The dose difference between the plotting’s of 
TCP versus dose fraction magnitude gives essential information 
for selecting options in dose delivery schedule. 

The PMO-BED model image processing results are sharp in 
several imaging formats, from simple 2D graphics to multifunctional 
ones. These series of results can be considered acceptable, Figure 
1-9, Table 3 & 4. Two simulations were presented as objective of 
the research, computationally designed for head and neck tumors 
[82-88]. It was intended to set in software precise experimental 
constants [22,81-88]. Therefore, 3D simulations could offer a 
realistic graphical and numerical dataset this type of cancers. Two 
different simulations with different constraints are shown and 
proven. Currently, biological models get a rationale experimental 
proven through radiobiology studies [76-80]. TCP and NTCP 
constitute acceptable parameters to predict patient survival 
time [20,87-88]. The method main advantages are graphics 
sharpness, low numerical residuals, demonstration of operability 
of this modern AI method, and contrast between two different 
BED criteria parameters. Inconvenient are that in literature 
experimental data parameters differ numerically [87-88,91]. The 
algorithm is based on the simplest BED model [22-25] at this 
stage. Running time is rather longer compared to Inverse Least 
Squares Optimization [1-21]. Grosso modo, Pareto Multi objective 
BED model was got for applied for optimization of radiotherapy 
BED algorithm in Lung cancer. The practical radiotherapy physics 
significance is an improved radiation therapy treatment for these 
tumors RT medical physics computational planning. 

Scientific Ethics Standards

This article shows additional results that complement previous 
studies and contributions, recently [87-88]. All the images are 
new/improved and numerical results from former publications 
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are extended and detailed. GA Artificial Intelligence software was 
developed originally by Dr Casesnoves on September 2022. Figure 
8 & 9 are new but developed from software in [87,88,91]. All initial 
modelling equations were developed from previous researchers 
contributions [1-25,87-88]. This article has previous papers 
mathematical techniques, reviews with explanations, [1-21,75], 
whose use was essential to make model numerical solutions and 
approximations. The number of Dr Casesnoves publications at 
references is intended also for reader’s learning and consultation. 
This study was carried out, and their contents are done according 
to the European Union Technology and Science Ethics and 
International Scientific Ethics norms [38,43-45]. 

This research was completely done by the author, the 
calculations, images, mathematical propositions and statements, 
reference citations, and text is original from the author. When a 
mathematical statement, proposition or theorem is presented, 
demonstration is always included. If any results inconsistency is 
found after publication, it is clarified in subsequent contributions. 
When a citation such as [Casesnoves, ‘year’] appears, there is 
not vanity or intention to brag. The reason is to keep clearly the 
intellectual property. The article is exclusively scientific, without 
any commercial, institutional, academic, religious, religious-
similar, non-scientific theories, personal opinions, friends and/
or relatives favors, political ideas, or economical influences. When 
anything is taken from a source, it is adequately recognized. Ideas 
and some text expressions/sentences from previous publications 
were emphasized due to a clarification aim [38,43-45].
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