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Abstract

This contribution constitutes an advance from previous articles in Breast and Head and Neck cancer Radiotherapy BED modelling (Biological
Effective Dose). Lung tumors Hyper fractionation TPO (Treatment Planning Optimization) is programmed with Pareto-Multi objective (PMO)
Genetic Algorithms (GA) software. Artificial Intelligence methods (AI) with GA are applied on hyper fractionated TPO and detailed. Results
comprise PMO-AI imaging process sequences and numerical values of PMO Lung cancer TPO parameters. Further results prove PMO-GA BED
model both with Pareto-Optimal Front detailed graphics, charts, and numerical dose fractionation datasets. Solutions for improved and advanced
RT Lung cancer TPO, and tumors in general for Fractional-dose photon dose delivery are explained. Mathematical Medical Physics analysis and
a few numerical comparisons to previous published research for Breast and Head and Neck cancer PMO with Evolutionary Artificial Intelligence
are presented.
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optimization of BED model for lung cancer hyper fractionated
RT treatment. Epidemiologically, the importance of lung cancer
screening among smokers and individuals with risk factors, has

Introduction

Formerly, biological models BED-TPO simulations with AI-GA
were proven in a series recent publication for Head and Neck and ) )
Breast tumors [1-23]. This article shows modelling advances from been proven recently. The reason is that survival rate after 5 years
those methods/results towards one of the most epidemiologically
frequent in male and female cancer patients actually, namely
lung tumors. Artificial Intelligence with Genetic Algorithms in
engineering software is applied on radiotherapy BED model for
Lung cancer. The objective of this research is further development,

programming, obtain two types of AI-GA 2D Graphics-numerical

among early-stage diagnosed lung tumors is significantly higher
[25-38]. Surgical resection of lung tumors at stage [ (T1-2, NO)
NSCLC yields satisfying outcome results with 5-year survival rates
of 60-70%, and remains at present the golden standard in this
population. After resection, radiotherapy is optional.

Lung tumors are a heterogeneous type of cancer. Their

Optimization, and extensive dataset results for BED model hyper
fractionated TPO protocol in Lung cancer [24]. Therefore, the
focus of the study is getting accurate and software functionality

incidence and prevalence are statistically among the highest
percent of all tumors and constitute the highest deaths cancer
rate at present. In general, [96], Non-Small-Cells-Lung carcinoma
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has a prevalence of approximately 85% of all lung tumors, while
Small-Cells-Lung carcinoma shows about 15% of prevalence. In
addition, lung and breast cancer show be the highest incidence
in brain metastases [39-45]. For example, 234,000 Primary Lung
cancer cases in USA in 2018 with 154,050 deaths. In 1990 the
incidence peak was [70 / 100,000 population], in 2018 [57 /
100,000 population] . This specific decrease of incidence in that
developed country is probably due to healthier population habits
related to tobacco consumption and contact with other toxic
substances/chemicals. The most important oncological causal
factor for lung cancer is proven be tobacco consumption, even
in passive smokers. However, further pathogenesis factors are
mainly chemical, from the external media intake/contact. Namely,
radon gas, passive smoking, prior radiation from any radiation
source [39-40,46-80], inhaled chemicals (polycyclic aromatic
hydrocarbons), heavy metal inhaled particles and/or micro-
nano particles. Among previous diseases, for instance pulmonary
fibrosis. If any potential patient is smoker and at the same time
is in contact with carcinogenetic chemicals, the ontogenetic
synergism factor increases the probability of lung cancer.
Therefore, although the tobacco consumption is decreasing in
developed countries, it does not happen so in underdeveloped
ones. This has caused an incidence/prevalence social-geographic-
pathology rate displacement towards those countries. In addition,
when smoking, the oral cavity can accumulate tobacco and alcohol
as ontogenetical factors. This pathogenesis can cause concomitant
diseases associated to the main lung tumor [81].

The radiosensitivity of tumor cells for optimal RT treatment
has two main factors to be considered [82-109], namely, alpha
and Betha coefficients and repopulation (Tumor Cells Intrinsic
Radiosensitivity). From about 4 days after dose fraction irradiation,
the fraction of clonogenic increases almost exponentially. Intrinsic
radio sensibility is a crucial factor for Biological Effective Dose
because the model depends on alpha and betha coefficients.
The mathematical reason is that the exponential for survival
fraction for radiobiological models is modified by these important
parameters (Algorithm 2), [23]. According to [109], the alpha
values vary [0.72,0.52], and the beta one’s change [0.047,0.034],
related to intermediate plating-delayed plating. In other words,
RT schedule and patient personalized treatment for lung tumors
should consider intrinsic radiosensitivity both for tumoral
and normal tissues, when treatment planning optimization is
calculated (NTCP, normal tissues complications probability
and TCP, Tumor Control Probability constitute essential
complementary probabilistic parameters when designing TPO).

The influence of oxygen model is a factor to be taken
into account when using BED model. The main reason is the
oxygenation factor on the numerical magnitude of alpha and
betha parameters. A basic model is as follows, where, («_, B, ) and
(«,, B, ) are the radio sensitivities under oxygenated and hypoxic
conditions respectively (Malinen et al. 2006) :

a, =a, /OER and 8, =B /OER?

where,

OER : oxygen enhancement ratio.

a, : Alpha magnitude in oxygenation.

a, : Alpha magnitude in hypoxygenation.
B, : Betha magnitude in oxygenation.

B, : Betha magnitude in hypoxygenation.

This distribution of hypoxia has also been used in previous
modelling studies as a consequence the proportion of the total
initial number of colognes. This proportion is predicted by
probability theory. The influence of oxygen is linked to models of
alpha and betha parameters related to the oxygen enhancement
ratio (OER), whose formula is large and not set in the paper. The
most important is: If OER is higher than 1, alpha-hypoxia and
betha-hypoxia decrease, then the Survival Fraction Equation
negative exponential because alpha-oxygenated and Betha -
oxygenated increase. Therefore, in general, oxygenated cells
are more radiosensitive. Therefore, to get a survival fraction in
oxygenated cells requires less radiation magnitude in general. In
brief, the a-hypoxia and 3-hypoxia parameters for radio sensitivity
depend on PO,, and this dependence can be described by the
oxygen enhancement ratio (OER). In this classical oxygenation-
radiosensitivity model the most important formulas are (Malinen
etal. 2006).

o, =a, /OER and 8, =B, /OER?

Where, (a,, B,) and (o, , B, ) are the radio sensitivities under
oxygenated and hypoxic conditions respectively.

Today, biomarkers are getting an important role in order
to predict the survival time, optimal chemotherapy, and both
characteristics at the same time. Table 1 shows a biomarkers
classification into P-Biomarkers (Biomarkers for Prognosis),
T-Biomarkers (Biomarkers for Optimal Treatment), and
H-Biomarkers (Hybrid Biomarkers Group). General Biomarkers
classification. Nano-Biomarkers is an open research field with
potential perspectives in future. Just remark that Biomarkers are
is extent, diverse and difficult as involves biochemistry, molecular
biology, medicine-pharmacology, medical physiology and several
other fields. Therefore, this Table is simple based on Author’s
proposal classification. Hence, Biomarkers can be classified into
two groups. Namely, T-Biomarkers, those specific for treatment,
and P-biomarkers, those specific for prognosis.

In recent years, the TNM stage taxonomy was improved in
the seventh edition of the staging guidelines to set a combination
of TNM parameters with survival outcomes rates and treatment
optimal choices among stages [refs]. Then, interrelated with TNM
stages, mainly the survival rate, and prognosis rate, location, types
of selected treatment strategies, divided into in stages I, II, IIl and
IV are nowadays considered complementary. TNM classification
has also defined survival rates for every stage. For example, T1a
and IA show get the approximately equal survival rate after 5 years
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of about 50%. The interrelation of both criteria can be considered
complex, since survival outcomes, surgery resection indication,
RT treatment, chemotherapy and immunotherapy are linked to
several stages of both taxonomies. For early stage : CT screening
proven e useful. Low dose CT was proven be useful in screening .
Screenings to get an early-stage diagnosis, and obtain an optimal
treatment, are focused mainly on selected population smokers
and high-risk professions risk factors (such as toxic chemicals).
TNM classification complemented with histologic grade is used
today for precise diagnosis-stage of lung tumors. For example, Tla
stage shows be the best survival rate after 5 years, 70%, while [V
has a 10% .Pleural invasion, particularly the presence of tumor at
the surface of the visceral pleura, has been an indicator of a poor
prognosis.

Since radiotherapy treatment is indicated in all TNM lung
cancer stages, it is possible to set a practical classification for
specific lung tumor RT treatment, [author’s proposal] . PTV Type
1 is a clinical planning for T and N stages located within thorax or
very close into thorax to lungs. PTV Type 2 is the RT planning for
N and M stages which are not close to primary lung tumor, such
as, upper nodules at cervical-neck level, distant axile nodules or
brain metastases. Radiation therapy treatment is applied at all
stages of lung cancer. Even at M stage, the brain metastases are
treated with radiation, and when their diameter are about 5cm,
radiosurgery is indicated. Lung radiation has special anatomical
and physiological constraints compared to other organs. Some
of them are lung density inhomogeneity, which is a synergic
difficulty with PTV volume changes with lung breath dynamics.
During radiation delivery, the lung tumor target borders could
vary about 2-3cm, and at the same time that implied a dynamic
density PTV change.

Radiotherapy biological models from initial
radiobiologicaltheoreticaland experimental studies[75,87-88,91].
Radiobiological interaction with normal tissues was researched
for radioprotection [76-80]. Then, two practical branches
emerged simultaneously from the equivalent mathematical
modelling investigation. Namely, to use radiobiology knowledge
for radiation protection of normal tissues, and conversely to set
radiobiological models to approach/improve the cell-kill method
in tumoral tissues [22-25,89-91]. From this branch-duality,
a practical swapping of equivalent parameters emerged for
practical/easier research and clinical-biological applications. For

come

instance [a,f3] typical Linear Quadratic models parameters. These
mathematical models both for normal and tumoral tissues were
usually based on exponentials whose power-functions depend
on a linear/nonlinear equation of radiation dose variable with a
number of experimentally validated coefficients/constants [22-
25,76-80,87-91,92-96].

The previous works and novelty in this artificial intelligence
method for hyperfractionation precision-schedule method,
[91,98,99,105], showed accurate results for survival fractions,
3D Graphical Optimization charts, and a database of numerical

results in other type of cancer, e. g. , prostate. To reach the
research objectives in this study, nonlinear GA-PMO engineering
software was programs for PMO-BED Lung cancer basic model.
The implemented specific software got to get going towards
improvements in GA programming and TPO radiotherapy
optimization for BED model hyperfractionated dose delivery
protocol [91].

Therefore, the innovation of this contribution shows a
number of aspects. The first one is the application of Pareto-
Multi objective Optimization methods for lung cancer with in
vivo dataset. The second one is the 3D Isodose lines in TPO with
new imaging results, based on previous recognized publications
[91,98,99,105]. The third is also the presentation of 3D Isodose
zones improved imaging-processing results based on another
recent article. Previous work with these methods belong to
prostate tumors and lung ones [91,98,99,105]. The primary
algorithms and software results for these Pareto-Multi objective
Optimization were initially developed in these contributions.

Consequently, the innovation of this study is to carry out Al-
GA programming for lung cancer hyperfractionation TPO in BED
models. Several simulations with Genetic Algorithms are shown in
2D charts and numerical results. The algorithm for multi objective
pareto optimization is detailed and programmed. Results
comprise GA simulations for two types of parameters-BED models
according to literature [75,87,88,91]. MATLAB system was used
for GA programming with acceptable graphical processing images
and numerical data findings. Succinctly, advanced research from
former Nonlinear Pareto-Multi objective GA optimization was
got for BED models in Lung cancer [87,88,91]. Applications for
radiotherapy TPO, dose delivery hyperfractionation schedule
future biological model advances in modern RT are also presented.

Mathematical Algorithms and Software Engineering
Methods

The model set in software patterns is the basic BED one [20-
25,89]. There is a number of variations/simplifications of this
model in the literature [20-25,39,40,75,85,91]. One reason is that
the radiobiological parameters determination vary according to
experimental radiobiology data findings [20-25]. Therefore, those
simplified BED models take statistical values of, for example,
Potential and others. In this section the algorithm is explained,
at Results one, the Pareto-Multi objective Optimization method
parameters to put forward sharply the graphs are detailed.
Besides, in biological models TPO applications, there is a medical
physics controversy/discussion about Hyperfractionation versus
Hypofractionation dose TPO delivery. That point is beyond
the scope of this study since the objective of the research is Al-
GA optimization of hyperfractionation dose. In this section the
algorithms are explained, and at results one, the Pareto-Multi
objective Optimization method parameters to put forward sharply
the graphs are detailed. However, for sharp learning, Table 2
shows the main simplified concepts of Genetic Algorithms applied
on Pareto-Multi objective Optimization.

How to cite this article: Francisco Casesnoves. Radiotherapy Lung Cancer Fractionated Biological Effective Dose Optimization with Genetic Algorithm
Pareto-Multi objective Method - Part II. Int J Pul & Res Sci. 2025; 8(1): 555728. DOI: 10.19080/1JOPRS.2025.07.555728


http://dx.doi.org/10.19080/IJOPRS.2025.08.555728

International Journal of Pulmonary & Respiratory Sciences

It is very frequent the application of inverse least square
techniques for RT inverse planning. Genetic algorithms constitute
a more modern method, and GA Pareto-Multi objective has
also been applied recently [58,67]. The genetic algorithms
(GA) optimization method, closely linked to modern artificial
intelligence, has experienced a recent increase in the use of its
optimization applications/variants [ 58,67]. Although the applied
GA method in this contribution is the standard, each one of the GA
variants has its advantages and disadvantages [10,11]. Basically,
GA is a stochastic mixed method similar to Monte Carlo but
simpler/faster in general. That is, in plain language, successive
generations of values (parameters) are computed by the software
until the optimal parameters figures are obtained. Actually,
the multiple combinations of random/stochastic methods, GA
variants, and modern programming techniques, offer an extensive
choice of options for the optimization designer. In this article,
the parameters, namely, are, dose fraction magnitude, number of
fractions, and total treatment time.

Therefore, here GA usually selects a randomly large number
of successive generations of dose fractions number, fraction
magnitude, and total treatment time, for the objective function
maxima accuracy subject to constraints-desired intervals for dose
fractions number, fraction magnitude, and total treatment time.
For every generation, three types of choices are applied for the OF.
Namely, elite selection, after-mutations, and cross-over changes
in the variables’ values. GA program stops when the number
of generations subject to the constrains and/or the numerical

tolerance for a generation is reached even if that solution is a local
or global minimum. In other words, speaking roughly, GA stops
when the best-possible and desired data for TPO that is needed
is obtained.

Pareto-Multi objective method is a specific optimization one,
and here is implemented with GA. This method, for example, is
extensively used also in economics to obtain optimal-comparative
values for two options (actually 3 ones is possible). Namely,
Objective 1 and Objective 2. The method of multi objective
optimization for simple constraints begin with setting an
objective function for the two different objectives with this type
of functions: Minimize,
F(X) = (13, ,(5),...fy (X)),
subject to,

K, (X¥)=0, for i=1,.M
Where,

F(x) : Main function to be optimized.
f(x) : Every function of same variables ( x ).
K/(x) : Constraints functions such as in general N # M .

Algorithm 1- The basic concepts of constrained Multi objective
Optimization. Then, two alternatives (in paper total dose 50-55 Gy
for Paretol, and 60-65 for Pareto2, and for second simulation, 60
Gy Paretol and 65 Gy Pareto2, see all Table 1 & 2) are set within
a built OF.

Table 1: Biomarkers Author’s proposal of modern classification based on [101,108,109].

Biomarkers Classification for Lung Tumor Radiotherapy Treatment [Author’s proposal]

Biomarker Type and Usage Clinical Applications

Radio-Biochemical Details and

Functionality Research

Prediction of approximate survival
time subject to optimal treatment.
There are a large variety of
techniques, for instance: Forward
and Reverse Phase Protein
Arrays, or Antibody and Antibody
Detection—Based Assays.

P-Biomarker (Main Function
Prognosis Biomarker)

The research in Biomarkers has
experienced significant advances
in recent years. Research clinical
trial example: investigation data
show that patient survival time in
PD L1 positive patients who are
treated with combined anti CTLA
4 and anti PD 1 is not superior
to nivolumab monotherapy. That
implied that was necessary further
research. This clinical trial study
area is difficult

Prediction for approximate
survival based on specific tumor
cell histology, and according to
the relation histology- efficacy of
drugs. Drug failure investigation
utility.

Selection of approximate
optimal choice for treatment.
Examples: dual-target recognition
technologies.

T-Biomarker ( Main Function
Treatment Biomarker)

Optimization of the best effective
drug type for personalized tumor
at every patient. Detection of
optimal chemical-drug target
and pharmacokinetics. Drug
failure patient personalization
investigation. Target
characterization, or Dual target.

HSP90a is an inducible molecular
chaperone that functions as
a homodimer. Research field
involves physics, nuclear physics,
biology, and chemistry.

Specially those biomarkers that Nano-Biomarkers actually in

H-Biomarker (Hybrid Function
Biomarker)

Both prediction of survival time
and optimal treatment

can make both functions, namely,
prediction and treatment, or one of
them better than the other.

investigation can modify the
immune cells and efficacy of
chemical-drugs over cells tumor
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Table 2: Genetic Algorithms applied on Pareto-Multiobjective Optimization simple explanation.

Simplification of Genetic Algorithms Method Applied to Pareto-Multi Objective Optimization

Parameter

Utility

Mathematical Significance

Number of Generations

To obtain the best results with the more efficacious
generations number. The program is selecting the most
accurate results (functions) after every generation, and

discarding those (functions) whose errors are higher than
constraints.

In general, the error decreases when reaching
a prime number of generations, after that, the
error differences are not significant

Best Fit Generation

The program finally shows those generations (functions)
that match the constraints better.

With Pareto-Multiobjective, the program shows
two parameters at 2D chart: namely, best fit for
paretol and best fit for pareto2

Pareto Front

The GA program works with two different functions, paretol
and pareto2. That is presented in a 2D graph and the
software-researcher can find the optimal points that satisfies
better the objectives for both at the same mathematical
parameters.

The most important when GA is applied on
Multiobjective Optimization. Along the pareto
front points given in 2D graph, the planner can
select the best combination for both pareto
function constraints.

Distance Among Individuals and
Fitness of Each Individual

Along successive generations, they show how the individuals
(values of paretol and pareto2) satisfy the constraints and
algorithm. Then there are two parameters, accuracy for
each and every individual independently, and comparative
precision among individuals of every generation.

It gives the mathematical differences among
successive generations. If it is not high, the
meaning is that the method has got acceptable
results.

First we get the bed model as it was done for head and
neck cancer in previous publications

Chebyshev L, optimization for,

=kd[1=dx'g}—...

(2

BED

effective

_ Ln(2) TTreatment B TDé‘lﬂy

Potential

Second Step: Setting This Model In L1 Objective Function:
Therefore, the Pareto-Multi objective Optimization basic BED
Effective created in this contribution algorithm-model was set
in software, [91]. Parameters are detailed in Algorithm 1 [85-
91]. Two different PMO optimization programming series are
presented with different parameter intervals magnitudes, Table 1
& 2. This BED model constitutes the fundamentals for fractionate
radiotherapy, although there are variations among authors [22-
25]. Formulation is based on previous studies computational
software [1-21,85-91]. The algorithm that was set, with Chebyshev
L1 norm, [Algorithm 1], reads,

Chebyshev L, Optimization,

for i=1,2...minimize pareto,

DOSEl _BEDBﬁbctive | L Wlth,
BEDeﬁéctive = kde|:1 + dxﬂ:|_
o

)

_ Ln(z) x TTreatment - TDelay

Potential

Where,

BED : The basic algorithm for Biological Effective Dose initially
developed [22-25,89].

K : Optimal Number of fractions for hyperfractionated TPO.
Optimization parameter [22-25,89].

D : Optimal Dose magnitude for every fraction. Optimization
Parameter [ Gy ]. [22-25,89].

A : The basic algorithm constant for Biological Effective Dose
models. Radiobiological experimental parameter. [ Gy ]. [22-
25,89].

B : The basic algorithm constant for Biological Effective Dose
models. Radiobiological experimental parameter . [ Gy? ]. It is
very usual to set in biological models [ a / 8 in Gy].

reatmene - 1h€ overall TPO time. This parameter varies
according to authors’ and institutions/hospitals criteria. [22-
25,89].

Ty : The overall TPO time delay for colognes re-activation.
This parameter varies according to authors’ experimental

research.

porential - 1N€ potential time delay for tumor cell duplication.

This parameter varies according to authors’ experimental-
theoretical research.

DOSE : The dose magnitudes for lung cancer simulation
algorithm for Biological Effective Dose [22-25,89]. Software
patterns were calculated around intervals lung DOSE € [50,65] Gy.

Algorithm 2- Lung cancer PMO algorithm [1-21,85-88] set in
software loops, patterns, and arrays for AI-GA. The parameters
interval-magnitudes for optimization are detailed in Table 1
& 2. It is an improvement from a series of previous research in
radiotherapy PMO-AI for Breast and Head and Neck tumors
[75,87-88,91].
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Pareto-Multi objective Dataset

For Lung Cancer
Optimization: In the following, Table 2 shows the first simulation
series according to data from [89]. Table 3 & 4 details dataset

for second simulations series with experimental-theoretical
magnitudes from [22-25]. In programming task, several trials
around these values were done.

Table 3: The first series simulations were done with approximate numerical-experimental data from several authors,
mainly [89]. These parameter intervals are different from second series simulations.

Genetic Algorithm Artificial Intelligence Optimization Parameter Interval for Lung Tumors First Optimization

Parameters with Programming Intervals
[First Optimization with [89] Criterion]

Magnitude Interval

Additional

Dose fractions number

Several trials [30, 40], [27, 32]

Schedule in literature [1-22-25,74-89,91],
references for all this column.

Dose fraction magnitude

Several trials [ 1.5, 2.5], [ 1.3, 1.7], Gy

Schedule in literature. Set with intervals according
to [89] criteria.

Treatment

Several trials [25,36],[30,40] Days

Schedule in literature. Set with intervals according
to [89] criteria. The RT treatment [22-25] varies
according to weekends, vacations, secondary effects
in patient, circumstances, etc.

TDe]ay

[15,20] Different from second simulation
series

Schedule in literature. Set with intervals according
to [89] criteria.

[programming interval]

Potential

[4.5, 5.5] At model denominator and
different from second simulation series

Schedule in literature. Set with intervals according
to [89] criteria.

Dose interval in Objective Function

50-55Gy for Pareto function 1

60-65Gy for Pareto function 2

Schedule in literature. Set with two total
dose Pareto Functions according to [87-89,
91] different criteria.

[0.1,0.6] Gy

From [89]

0.035 Gy

Different from second simulations

From [89]

Table 4: The second series simulations were done with approximate numerical-experimental data from several
authors, mainly [22-25]. These parameter intervals are different from first series simulations.

Genetic Algorithm Artificial Intelligence Optimization Parameter Interval for Lung Tumors Second Optimization

Parameter [Second Optimization with
Refs [22-25,83] and Related Author’s
Radiotherapy Text Books] Criteria]

Magnitude Interval

Additional

Dose fraction number

[25, 35] and [20, 30]

Schedule in literature [1-22-25,74-89,91-96] references
applicable for all this column.

Dose fraction magnitude

[ 2.25,3.25] Gy

Schedule in literature. Set with intervals according to [89]
criteria.

Treatment

[30,32] Days

Schedule in literature. Set with intervals according to [22-
25] criteria. The RT treatment [22-25] varies according
to weekends, vacations, secondary effects in patient,
circumstances, etc.

T

Delay

[21] Days standard

Schedule in literature. Set with intervals according to [22-25]
criteria.

TPutential [ pmgrammmg lnterval]

[3.30, 4.10] Days

Schedule in literature. Set with intervals according to [22-25]
criteria.

Dose interval in Objective Function

60Gy for Pareto function 1

65Gy for Pareto function 2

Schedule in literature. Set with two total dose Pareto
Functions according to [87-89, 91] different criteria.

[0.1, 0.6] Gy™!

From [22-25]

0.0581Gy?

From [22-25]

Results

Results are 2D AI-GA graphical and numerical. As shown in

explained. That is, Best Fit, Number of Generations and Pareto-
Front. In Pareto-Front, the optimal point was selected to get

Table 2, the most important GA parameters are presented and

the best results, Figure 1-5. Figure 6 & 7 show the histograms
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score data results, that is, the difference between the paretol
and pareto2 scores. For first simulations, Figure 1-4 show PMO
results-Figure 3.1 is a variant of Figure 3. For the second group,
2D imaging processing are Figure 5-7. Table 3 & 4 present
details of both numerical PMO optimization results. The most
important to validate the results are those ones that show the
Pareto Front. Average distance among generation individuals,
score histograms, stopping criteria, or fitness for every individual,

are also significant. All the complementary details and shown in
additional 2D charts for first and second AI-GA PMO optimization.
Maximum number of generations programmed is 300. Some other
generations number to compare were selected as 100, General
running time range for all images and both optimization trials is
about 2-6 minutes. Numerical results, Table 3 & 4, resume for PMO
in BED model. Dose fraction magnitudes, number of fractions and
optimal total RT treatment values are explained in Table 3 & 4.
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Figure 1: First optimization Multifunctional AI-GA 2D graph. The Pareto-Front is the most important graph. When it shows low residuals

the GA optimization is acceptable for Algorithm1. In this study both f 1 and f 2 show low 1.5 and 3.5 residuals. The number of points on

the Pareto front was: 18. The number of generations is 300. Note the precision reached: pareto1 and pareto2 differ in approximately 1
Gy. Average distance among individuals is approximately lower than 0.5, and fitness of every individual is acceptable.
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Figure 2: Stopping criteria for first optimization showing 100% criteria met. At Y axis generation and time.
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Figure 3: This is a significant 2D GA graph. Most of average distance magnitude in lower than 2 from 50th generation on. The number
of points on the Pareto front was: 18. The number of generations is 300.
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Figure 3.1: Refinement of first optimization GA 2D graph from Figure 3. Average distance magnitude is approximately lower than 0.5
from 150" generation on.
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Figure 4: First optimization Multifunctional GA 2D graph. It comprises rank histograms, note the error decreasing gradient. Fitness
of each individual, inset, at second graph. Average distance at lowest image. All parameters show be precise, especially the rank
histograms.
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Figure 5: Second optimization Multifunctional Al-GA 2D graph. The Pareto-Front is the most important graph. When it shows low
residuals the GA optimization is acceptable for Algorithm1. In this study both f 1 and f 2 show lower than 3 residuals. The number of
points on the Pareto front was: 18. The number of generations is 300. Average distance is lower than 1, about 0.5 from 50th generation
on. One option for a balanced pareto-choice with approximate equal residuals for both pareto functions is marked inset with green
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arrows. In this second simulation pareto1 and pareto2 differences is lower than the first one.

Figure 6: Stopping criteria for second optimization showing 100% criteria met. At Y axis generation and time. Lower chart shows
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GA 2D results charts and multifunctional images also. In Figure 1, the most

. ) . o important is the Pareto-Front first chart. Complementary, the
First simulation 2D GA results are shown in Figure 1-4. The ) o ) R .

) i o Distance among individuals and the fitness of each individual is

data for first and second simulation is set at Table 3 & 4. Second

. o . ) i shown, concepts in Table 2.
one is presented in Figure 5-8. There are simple image processing
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Figure 8: This is the most pareto-multi objective significant graph given by software when PMO is programmed. Note that Objective 2
shows be better than Objective 2 for Head and Neck tumors Al-GA optimization [ 87-88 ]. The number of points on the Pareto front was:
18. The number of generations is 300-800.

GA Numerical results First simulation numerical results

This section shows a brief of numerical dataset corresponding The first simulation results are shown in Table 5. The second
to imaging processing AI-GA results, Table 4 & 5. It is useful to  in Table 6. Main comparison should be among dose per fraction
compare the dose per fraction and number of fractions among all and number of fractions. Results are according to literature and

optimal results. recent advances several hospital data.

Table 5: PMO Artificial Intelligence with GA optimization first simulation series numerical results. Numerical results
intervals, after several trials, match approximately [89] data.

Genetic Algorithm Artificial Intelligence Optimization Numerical Results for Lung Tumors First Optimization

Parameters with Programming Intervals . .
[ First Optimization with [89] Criterion] Ras el addiiond

Dose optimal fraction number [ 27, 31] Fractions Usual protocol in literature [1-21,74-89].

Usual protocol in literature [1-21,74-89]. Set with intervals

Dose fraction optimal magnitude [1.60, 1.90] Gy according to different criteria.
Usual protocol in literature [1-21,74-89]. Set with intervals
T [30,33] Days Different from second according to different criteria. The RT treatment varies
Treatment simulations according to weekends breaks, secondary effects, patient

circumstances, etc.

Usual protocol in literature [1-21,74-89]. Set with intervals

[12,16] Days From [89] according to different criteria.

Delay

T [programming interval] [4.5, 5.5] Different from second Usual protocol in literature [1-21,74-89]. Set with intervals
rotential LPTO8 5 simulation series according to different criteria.
Dose interval in Obiective Function 58Gy for Pareto function 1 Usual protocol in literature [1-21,74-89]. Set with two total dose
) 65Gy for Pareto function 2 Pareto Functions according to different criteria.
[0.1,0.6] Gy* Set in arrays [0.35 +
“« 0.25] Like second simulations From [89]
B 0.035Gy* Set in arrays From [89]

Table 6: Brief of PMO Artificial Intelligence with GA optimization second simulations series numerical results in Head
and Neck tumors for advanced TPO. Dataset for software [22-25].

Genetic Algorithm Artificial Intelligence Optimization Numerical Results for Lung Tumors Second Optimization

Parameter [Second Optimization with
[25,83] and Related Author’s Radiotherapy Magnitude Interval Additional
Text Books criteria]

Dose fraction number [19, 22] Usual protocol in literature [1-21,74-86].
. . Usual protocol in literature [1-21,74-86]. Set with
Dose fraction magnitude [2.0,2.5] Gy intervals according to different criteria.
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Treatment

[30,32] Days

Usual protocol in literature [1-21,74-86]. Set with
intervals according to different criteria. The RT
treatment varies according to weekends breaks,
secondary effects, patient circumstances, etc.

T [22,35] Days

Delay

Usual protocol in literature [1-21,74-86]. Set with
intervals according to different criteria.

T programming interval]

Potential [

[3.30, 4.10] Days

Usual protocol in literature [1-21,74-86]. Set with
intervals according to different criteria.

Dose interval in Objective Function

60Gy for Pareto F function 1

65Gy for Pareto F function 2

Usual protocol in literature [1-21,74-86]. Set with
two total dose Pareto Functions according to different
criteria.

a [0.1,0.6] Gy*

From [25,83] and related authors’ radiotherapy text
books

B 0.0581Gy™

From [25,83] and related authors’ radiotherapy text
books

Comparative results with head and neck cancer ai-ga
optimization research

AI-GA comparison with the same method for Head and
Neck tumors, Figure 8 & 9. These images included here are
newly-developed different imaging processing PMO results than
obtained in [87]. The most significant to check the results are

the Pareto Front images, Figure 8. Figure 9 is a multifunctional
image AI-GA processing for Head and Neck cancer RT treatment
based on [87,91] software. Distance among individuals, score
histograms, and fitness of every individual are shown, Figure 9.
Maximum number of generations selected was 300-800. Running
time for Figure 8 is shorten than Figure 9, both processes is from
2 to 6 minutes.
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Figure 9: Head and Neck tumors Pareto-Optimization Multifunctional GA 2D graph. Developed with software for [87-88]. It shows
Distance among individuals, Fitness of every individual, and Score Histogram. Running time is about 3-4 minutes.

Discussion and Conclusion

The objectives of the study were graphical and numerical
optimization of standard BED model for modern Lung cancer
TPO. The method applied was Artificial intelligence with GA
Pareto-Multi objective Optimization. It is the same technique
from previous research with BED model for Breast and Head
and Neck tumors TPO. Optimization was performed according
to two authors’ biological BED models criteria [22-25, 87-
89,91]. Therefore, it constitutes a step forward to apply GA for
Lung cancer TPO advances. The mathematical method applied

is Pareto-Multi objective Optimization. The advantage of 2D
Multi objective Optimization compared to common one is to
obtain at least two pareto functions, and the optimal choice can
be got selecting the most convenient data from objective 1 and
objective 2 graphs (Figure 1,8,9). Compared to Tikhonov Inverse
Optimization method, that was applied in previous publications,
that constitutes an advantage [21,75].
Tikhonov methods can be considered precise and useful. A useful-
comprehensive simplification of the GA-PMO method was shown
in Table 2. Complementary, and specifically for lung tumors, a

However, classical
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Biomarkers Author’s proposal of modern classification based on
[101,108,109].

The BED model algorithm that was selected is the standard
one of the first generation. For hyperfractionation as a first step
research choice [25,83]. The numerical difference has not been
checked implementing further generations of BED algorithms.
However, as a tentative calculus given the numerical data
obtained, it seems that the numerical differences could not differ
significantly from the first-generation model function. The L1
norm selected (Tikhonov L1 norm) was applied for programming
simplification. In previous articles, it was found that software
implementation of (Tikhonov L2) norm did not show substantial
differences with L1 norm. Besides, the design of the program
for L2 norm results be more complicated and does not bring
important variances. Other features that the implementation of
the L2 norm implies a longer running time, which is an added
difficulty. First simulation shows higher number of fractions, and
lower magnitude of dose per fraction than the second simulation,
Table 5 & 6.

Factually, and according to recent literature [101-109],
GA-PMO method is more widely used compared to Inverse
Optimization with Least Squares algorithm, for example, [11-16].
Recent optimization methods tend to apply/use more frequently
evolutionary algorithms and also the variants and improved GA
algorithms based on successive method-generations. 3D-imaging
Interior Optimization (the basic) was implemented, e.g., for
superconductors modelling with acceptable numerical results in
a series of publications, for example. Although 3D-10 technique is
essentially a numerical imaging-processing one, the 2D GA-PMO
method gives also acceptable information and dataset for the
approached problem.

The software that was designed for the research is based
on previous studies for applications of GA standard method .
The implemented dataset is founded on the lung cancer current
protocol doses and do not differ in magnitude order along the
literature. As an example, these calculations boundaries and
magnitude orders were modernly confirmed . Therefore, the
constraints and boundaries set in programming patterns can be
considered acceptable. In terms of programming running time,
it was checked that the approximate average time to obtain a
simple GA chart was about 2 minutes, provided that number of
generations not be higher than (200, 300). If the generations
number increases from 150, approximately, the running time
could reach 3 or 4 minutes. The Multi graphics take an average of
2 minutes more than the simple ones.

The numerical data obtained matches the average literature
dataset [99], with very low differences. Specially the recent
protocols in Radiosurgery [100], coincide with the dosimetry
results. When number of generations is increased, no significant
changes are observed in magnitude orders for Pareto 1 and 2
Multi objective Functions. The objective of the study was not
discussed between hyperfractionation versus hypofractionation.

However, according to results it is possible to comment some
classical ideas about this controversial matter. There are
Hyperfractionation, Hypofractionation, Hybrid Schedule and
Accelerated Hyperfractionation dose delivery schedules. Hospital
institutions differ in technical facilities, staff specialization, and
treatment time avail-able, therefore this question adds another
influential factor for those optimal clinical-radiation oncology

decisions.

Author’s criterion is that all of them should be treated/
considered in function of personalized RT treatment, and the
most important idea is that all of them depend on multiple
factors [22-25,87-89,91]. one im-portent factor is the magnitude
order of the coefficients alpha and betha for tumoral tissue at
every patient, if time and hospital facilities can determine those.
Hyperfractionation considers that the higher recovery capacity
of late-responding normal tissues, in practical terms NTCP
magnitude, is higher when contrasted with tumor-tissue. If the
response of normal tissues is low, it implies that the quotient (
alpha/betha ) has a lower magnitude order) . However, the more
fractions get the schedule, the higher changes of this quotient is
observed. For comparative considerations between Hyper and
Hypofractionation. The dose difference between the plotting’s of
TCP versus dose fraction magnitude gives essential information
for selecting options in dose delivery schedule.

The PMO-BED model image processing results are sharp in
severalimagingformats,fromsimple 2D graphicstomultifunctional
ones. These series of results can be considered acceptable, Figure
1-9, Table 3 & 4. Two simulations were presented as objective of
the research, computationally designed for head and neck tumors
[82-88]. It was intended to set in software precise experimental
constants [22,81-88]. Therefore, 3D simulations could offer a
realistic graphical and numerical dataset this type of cancers. Two
different simulations with different constraints are shown and
proven. Currently, biological models get a rationale experimental
proven through radiobiology studies [76-80]. TCP and NTCP
constitute acceptable parameters to predict patient survival
time [20,87-88]. The method main advantages are graphics
sharpness, low numerical residuals, demonstration of operability
of this modern Al method, and contrast between two different
BED criteria parameters. Inconvenient are that in literature
experimental data parameters differ numerically [87-88,91]. The
algorithm is based on the simplest BED model [22-25] at this
stage. Running time is rather longer compared to Inverse Least
Squares Optimization [1-21]. Grosso modo, Pareto Multi objective
BED model was got for applied for optimization of radiotherapy
BED algorithm in Lung cancer. The practical radiotherapy physics
significance is an improved radiation therapy treatment for these
tumors RT medical physics computational planning.

Scientific Ethics Standards

This article shows additional results that complement previous
studies and contributions, recently [87-88]. All the images are
new/improved and numerical results from former publications
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are extended and detailed. GA Artificial Intelligence software was
developed originally by Dr Casesnoves on September 2022. Figure
8 & 9 are new but developed from software in [87,88,91]. All initial
modelling equations were developed from previous researchers
contributions [1-25,87-88]. This article has previous papers
mathematical techniques, reviews with explanations, [1-21,75],
whose use was essential to make model numerical solutions and
approximations. The number of Dr Casesnoves publications at
references is intended also for reader’s learning and consultation.
This study was carried out, and their contents are done according
to the European Union Technology and Science Ethics and
International Scientific Ethics norms [38,43-45].

This research was completely done by the author, the
calculations, images, mathematical propositions and statements,
reference citations, and text is original from the author. When a
mathematical statement, proposition or theorem is presented,
demonstration is always included. If any results inconsistency is
found after publication, it is clarified in subsequent contributions.
When a citation such as [Casesnoves, ‘year’] appears, there is
not vanity or intention to brag. The reason is to keep clearly the
intellectual property. The article is exclusively scientific, without
any commercial, institutional, academic, religious, religious-
similar, non-scientific theories, personal opinions, friends and/
or relatives favors, political ideas, or economical influences. When
anything is taken from a source, it is adequately recognized. Ideas
and some text expressions/sentences from previous publications

were emphasized due to a clarification aim [38,43-45].
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