

Research Article Volume 8 Issue 4 - December 2018 DOI: 10.19080/JDVS.2018.08.555741

Dairy and Vet Sci J Copyright © All rights are reserved by Alagbe JO

Performance and Haemato-Biochemical Parameters of Weaner Rabbits Fed Diets Supplemented with Dried Water Melon Peel (Rind) Meal

Alagbe JO*

Department of dairy and Veterinary Sciences, University of Abuja, Nigeria Submission: November 20, 2018; Published: December 06, 2018

*Corresponding author: Alagbe JO, Department of dairy and Veterinary Sciences, University of Abuja, Nigeria

Abstract

A study was carried out to investigate the performance, hematological and serum biochemistry of weaner rabbits given feed formulated with dried water melon peel meal (WMR). Thirty rabbits of mixed breed aged 7-8 weeks with initial weight of 602-616g were used in a completely randomized design (CRD) with six replicates per treatment. The animals were fed varied levels of WMR at 0%, 2.0%, 4.0%, 6.0% and 8.0% to obtain five diets. The control diet was prepared to meet the nutritional standards of growing rabbits and it lasted for 12 weeks. Results revealed that there was no significant (p>0.05) differences in the values obtained for the growth performance among the treatments. Hematological and all the blood serum biochemical traits measured were not a significantly different by the dietary inclusion of WMR. It was concluded that dried water melon peels (WMR) can be included up to 8.0% in the diets of weaner rabbits without deleterious effect on the performance, hematological and serum biochemical parameters of rabbits.

Keywords: Water melon peels; Performance; Hematology; Blood; Weaner rabbits

Abbreviations: WMR: Water Melon Rind Meal; CRD: Completely Randomized Design; EDTA: Ethylene Diamine Tetra Acetate; PCV: Pack Cell Volume; HB: Haemoglobin Concentration; RBC: Red Blood Cell; WBC: White Blood Cell; MCV: Mean Corpuscular Volumes; MCHC: Mean Corpuscular Heamoglobin Concentration; SGOT: Glutamic Oxaloacetate Transaminase; FCR: Feed Conversion Ratio

Introduction

Protein is the basic structural material from which all body tissues are formed and it has been reported its intake of most developing countries including Nigeria is very low due to the high cost of victual; With the rapid increase in the population rate, there have additionally been an increase in competition among feed stuffs which are also used in feed making with human beings, sundry efforts are been made by Animal nutritionist in order to provide solution to the low protein intake especially from animals to increment the caliber of animal protein intake of the populace by probing for alternatives that are more frugal sources of feed ingredients to procure prosperity in livestock management. The utilization of unconventional feedstuffs and forages which are not consumed by humans can be used to produce animal feeds [1]. Among such alternatives is the use of water melon peels which is found abundant in minerals/ vitamins and can be used to feed animals like rabbits due to fast growing characteristics and their ability to convert tropical forages and agricultural by products to human food (meat).

Water melon belongs to the family to the family Cucurbitaceae and the species Citrullus lanatus. They are widely distributed in the tropics and subtropics [2,3]. It contains low energy and high level of micronutrients such as carotene, vitamin k, ascorbic acid, riboflavin, iron, iodine and other mineral elements. It has been established that water melon peels are found in many places in Nigeria Gin [4]. Watermelon rinds may have additional medical benefits. Research by the Agricultural Research Service discovered that watermelon rinds contain citrulline. Citrulline creates arginine, an amino acid that makes proteins for the body and plays a role in the relaxation of blood vessels [5]. Rabbits (Oryctolagus cuniculus meat are rich in protein and other nutrients which are safe for human consumption [6]. It has a feeding habits with no appreciable competition with man, this is because it can subsist on green as basal diet. Rabbits can easily utilize waste to produce meat giving it an advantage over other animal species like poultry Egbo.

Although extensive studies had shown that WMR had an appreciable quantity of phytochemical and antioxidant, proximate components and anti-nutritional factors of water melon rinds Fila & Johnson [7,8], on effect of water melon rinds on the nutrient composition, performance and carcass characteristics of albino rats [9] but there are no information on supplementing dried water melon rinds on the general performance and blood profile of rabbits. An experiment on WMR inclusion in animals (rabbits) will give a clue on its safety margin during dietary supplementation and as an alternative unconventional agricultural feed stuff. The main aim of this study was to investigate the growth performance and haematobiochemical parameters of growing rabbits fed varying inclusion levels of dried water melon peel (rind) meal.

Methodology

Experimental Site

This study was carried out at the Livestock Teaching and Research Farm of University of Abuja, Gwagwalada, Abuja-Nigeria.

Collection and processing of water melon rinds (WMR)

Fresh healthy water melon fruit were collected from Gwagwalada, Abuja. The fruit was thoroughly cleaned remove sand particles after which they were sliced with cleaned knife to separate the rind from the pulp. The rind was cut into pieces and sundried for 6 days, the dried rinds were then milled in a hammer mill to form water melon rind meal (WMR).

Pre-experimental Operations

A total of thirty, 7-8 weeks bucks cross breed rabbits (Chinchilla × New Zealand White) with an average weight of 602g and 616g were used for this experiment. They were individually housed in a an all wire cages measuring 50cm×35cm×40cm (width×length×height) and equipped with feeding and watering troughs. The cages were cleaned and disinfected before the arrival of the animals. The rabbits were allowed two-week adjustment period during which they were fed with control diet and given prophylactic treatment of Oralmectin against endo and ecto- parasites before they were placed on the experimental diets.

Animal Management, Experimental Diets and Design

Five diets were formulated to meet the nutritional requirements of growing rabbits. Control diet (T1) did not contain WMR, while diets T2, T3, T4 and T5 contained WMR at 2.0%, 4.0%, 6.0% and 8.0% respectively. Experimental design used was a completely randomized design. The animals were fed twice daily at 7:30 hour and 14:30 hour, feed and clean water was

Results and Discussion

 Table 1: Percentage Composition of Experimental Diets.

supplied the performance of the rabbits in terms of feed intake and mortality were recorded daily and all management practices were strictly observed throughout the experiment which lasted for 12 weeks.

Blood Analysis

On the 12th week of the experiment, blood samples were collected from the marginal vein of three randomly selected rabbits per treatment. The blood samples were analyzed for some hematological and serum biochemical parameters; blood samples for hematology were collected into bottles containing Ethylene Diamine Tetra Acetate (EDTA). The hematological parameters such as Pack cell volume (PCV), Red blood cell (RBC), White blood cell (WBC), Haemoglobin concentration (Hb) and absolute counts of neutrophils, lymphocytes, monocytes and eosinophils were computed according to the method of Jain. The Mean corpuscular volumes (MCV), mean corpuscular haemoglobin (MCH), Mean corpuscular heamoglobin concentration (MCHC) were calculated according to Bush [10].

Blood samples that were meant for serum biochemistry were collected into other bottles free from any anticoagulant. The serum total protein, Albumin and Globulin were computed according to, Uric acid, Creatinine, Glutamic oxaloacetate transaminase (SGOT) and Glutamic phosphatase transaminase (SGPT) was determined according to Scott [11].

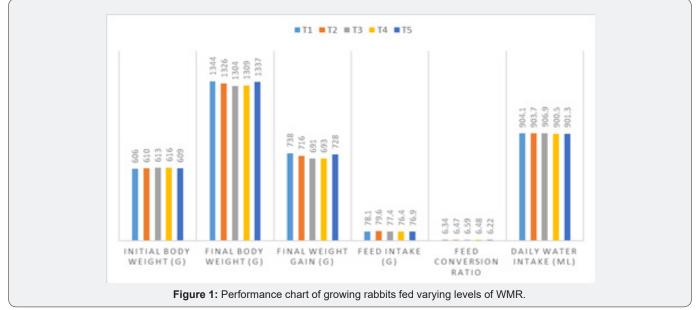
Laboratory Analysis

The proximate composition of experimental diets and WMR were analyzed according to AOAC (2000), while phytochemical analysis was determined according to Harbone [12]. The mineral analysis were carried out using Atomic Absorption Spectrophotometer (AAS). Vitamin content of WMR were analyzed using method reported by Onwuka [13].

Statistical Analysis

Data were analyzed using the general linear model procedures of Statistical Analysis Systems software with the model containing treatments. Differences between treatment means were separated using. Significant differences were declared at (p<0.05)

Materials	Treatments							
	T1	T2	T3	T4	Т5			
Maize	15	15	15	15	15			
Wheat offal	30	28	26	24	22			
Groundnut cake	10.75	10.75	10.75	10.75	10.75			
Soya meal	5	5	5	5	5			
Palm kernel meal	35	35	35	35	35			
Bone meal	2.5	2.5	2.5	2.5	2.5			
Limestone	1	1	1	1	1			
Lysine	0.1	0.1	0.1	0.1	0.1			


002

How to cite this article: Alagbe J. Performance and Haemato-Biochemical Parameters of Weaner Rabbits Fed Diets Supplemented with Dried Water Melon Peel (Rind) Meal. Dairy and Vet Sci J. 2018; 8(4): 555741. DOI: 10.19080/JDVS.2018.08.555741.

Journal of Dairy & Veterinary Sciences

Methionine	0.1	0.1	0.1	0.1	0.1					
1Premix	0.25	0.25	0.25	0.25	0.25					
Salt	0.3	0.3	0.3	0.3	0.3					
WMR	WMR 0 2 4 6 8									
Total	100	100	100	100	100					
	Nutrient Composition (calculated)									
Protein (%)	Protein (%) 17.81 16.97 16.56 16.48 16.4									
Crude fibre (%) 10.24 10.45 10.52 10.88 11.01										
Ether extract (%)	2.52	2.41	2.35	2.28	2.12					
Ash (%)	6.11	5.67	5.37	5.25	5.19					
ME (kcal/kg)	2638.5	2634.7	2633.1	2630.9	2603.1					

¹Premix supplied per kg diet :- Vit A, 7,000 I.U; Vit E, 5mg; Vit D3, 3000I.U, Vit K, 6mg; Vit B2, 5.5mg; Niacin, 25mg ; Vit B12, 16mg ; Choline chloride, 120mg ; Mn, 5.2mg ; Zn, 25mg ; Cu, 2.6g ; Folic acid, 2mg ; Fe, 5g ; Pantothenic acid, 10mg ; Biotin, 30.5g ; Antioxidant, 20mg.

The proximate results obtained for the experimental diets is presented in Table 1. The crude protein, crude fibre, ash, ether extract and energy in the diet ranges from 16.40% - 17.81%, 10.24%-11.10%, 5.19% - 6.11%, 2.28% - 2.52% and 2603.1 - 2638.5 (MEkcal/kg) respectively. In the current study Crude fibre shows an increasing trend as increasing of inclusion level of WMR. This agreed with the findings of. However, proximate composition in the experimental diets was within the range recommended for growing rabbits NRC; [13-15] (Figure 1).

 Table 2: Proximate Composition of WMR.

Parameters	% Composition		
Crude protein	7.45 ± 0.01		
Crude fibre	18.57 ± 0.03		
Ether extracts	10.44 ± 0.78		
Ash	3.22 ± 0.12		

The results on the proximate composition of WMR is presented in Table 2. WMR contained 7.45% crude protein, 18.57% crude fibre, 10.44% ether extract and 3.22% ash. The current study is in line with the findings of Feumba & Johnson [16,17] who reported similar results on chemical evaluation of

many dried fruits. Table 3 reveals the phytochemical analysis of water melon rinds (WMR), the phytochemical components are 1.03% flavonoids, 1.01% alkaloids, 0.79% tannin, 2.12% saponins and 1.23% phytate respectively while those of minerals are 0.47mg copper, 1.31mg iron, 1.02mg zinc, 30.02mg calcium, 1.44mg magnesium, 1.12mg potassium, 0.77mg sodium, 131.1mg phosphorus, 1.18mg manganese and 0.13 mg selenium respectively as presented in Table 4. The trend of mineral concentration in WMR in decreasing order is P> Ca>Mg>Fe>K>Mn>Zn>Na>Cu>Se, this mineral trend agrees with the report of Gladvin; Olayinka & Etejere [18] on the mineral and vitamin content in water melon peel.

Table 3: Phytochemical Analysis of WMR.

Parameters	% Composition		
Flavonoids	1.03 ± 0.01		
Alkaloids	1.01 ± 0.04		
Tannins	0.79 ± 0.12		
Saponins	2.12 ± 0.01		
Phytate	1.23 ± 0.88		

Journal of Dairy & Veterinary Sciences

Parameters	% Composition		
Copper	0.47 ± 0.00		
Iron	1.31 ± 0.01		
Zinc	1.02 ± 0.03		
Calcium	30.02 ± 3.10		
Magnesium	1.44 ± 0.01		
Potassium	1.12 ± 0.03		
Sodium	0.77 ± 0.02		
Phosphorus	131.3 ± 1.22		
Manganese	1.18 ± 0.04		
Selenium	0.13 ± 0.01		

Table 4: Mineral composition of WMR.

Table 5: Composition of Vitamins in WMR.

Parameters	% Composition		
Vitamin A	56.81± 6.31		
Vitamin B1	1.22 ± 0.01		
Vitamin B2	2.33 ± 0.06		
Vitamin B3	5.01 ± 0.10		
Vitamin C	58.12 ± 0.05		

Phytochemical results of WMR in this current study was also consistent with report of Egbonu [21-25]. According to Bako [26] phytochemicals vary in distribution within the plant parts as well as in their occurrence within the plant species and have also been reported to reduce the risk of some diseases due to their protective and therapeutic roles Adesanya & Sofowora [27]. According to Adisa [28], tannins are known to possess antibacterial and anti-viral activity, saponin plays a significant role in maintaining blood cholesterol levels [29]. Adesanya & Sofowora [27] reported that phenol plays a vital role in red blood cell modifier. Results on the vitamins composition of WMR revealed that Vitamin A contains 56.81mg, 1.22 vitamin B1, 2.33mg B2, 5.01mg B3 and 58.12mg C respectively. Vitamin C had the highest number followed by vitamin A, B3, B2 and B1.

enzyme activity and is involved in the transmission of nerve impulses, copper is significant in iron and energy metabolism while sodium and potassium play key roles in the acid-base regulation of the blood and other body fluids Amy E Halls [21].

Onwuka & Adeyeye [19,20] reported that Minerals is

always required for efficient metabolic processes. Calcium and

phosphorus are major components of the skeletal system Table

5, magnesium is a component of the bone, a cofactor of several

Table 6: Performance traits of growing rabbits fed varying inclusion levels of WMR.

Parameters	T1	T2	Т3	T4	Т5	
	0%	2%	4%	6%	8%	S/L
Initial live wgt (g)	606±31.4	610±22.1	613±27.2	616±40.4	609±41.4	Ns
Final live wgt (g)	1344±24.6	1326±34.3	1304±30.6	1309±41.1	1337±39.8	Ns
FWG (g)	738±3.02	716± 5.31	691±7.80	693±4.41	728±6.12	Ns
Feed intake (g)	78.1±1.31	79.6±3.01	77.4±2.53	76.4±2.61	76.9±1.77	Ns
FCR	6.34±0.43	6.47±0.32	6.59±0.01	6.48±1.10	6.22±0.78	Ns
DWI (ml)	904.1±1.23	903.7±1.02	906.9±0.07	900.5±0.19	901.3±0.21	Ns
Mortality	0/6	0/6	0/6	0/6	0/6	

Ns: No significant (p>0.05) difference.

004

Generally, Vitamins are very vital components in food because of their role in proper functioning and body metabolic activity [30]. Vitamin C protects the body from oxidative stress and maintains the immune system, their synergistic combination with other vitamins allows proper growth, high reproductive performance and enzymatic activities. The results obtained for WMR agrees with the reports of Collins [31-33] as presented in Table 6. Supplementation of (WMR) at different levels in growing rabbits showed no significant effect on their feed intake, body weight change and feed conversion ratio (FCR) in the current study. This was similar with the finding of Haruna & Muhammad [34].

According to Ojabo [35] the use of Sweet orange peel in the diet of growing rabbits produced no significant increase in feed intake, final body weight and FCR when compared to a control diet but contrary with the reports of Ishaya B Kaga [36] on the performance of rabbits fed Delonix regia meal. The water intake values obtained are practically the same and mortality was recorded throughout the experimental period, this could be due

to proper hygiene, biosecurity measures and the safety margin of including WMR in the diet of the animal as presented in Table 7.

Results on the blood hematological parameters of weaner rabbits fed diets supplemented with water melon peels is presented in Table 8. The values of PCV obtained is between 39.06% - 57.32%, hemoglobin values of 8.13 – 13.44 (g/dl) while RBC values are 6.11 – 7.33 ((×106/L). The PCV values fall within the normal ranges of 35-60% previously reported by Flecknell [37]. All the hematological parameters obtained in this study showed that were not significantly (p>0.05) influenced by the dietary inclusion of WMR. The PCV, Hb, RBC, MCV, MCHC and WBC values obtained slightly increased from diet 1 to 5 though not at a significant level. The parameters observed in this study were within the normal ranges for rabbits reported by Mituka & Rawnsley [38].

Togun & Oseni [39] reported that hematological analysis is useful in disease diagnosis and nutritional stress. It also provides the opportunity to clinically investigate the presence of several metabolites and other constituents in the body [40]. Nutrition and dietary contents affect the blood profile of healthy animals [41,42]. Esonu [43] posited that haematological parameters like haematocrit value, hemoglobin concentration, white blood cell count, red blood cell count is dictating the level of oxygen in the blood. Blood parameters are excellent medium for measurement of potential biomarkers, because its collection is relatively non-invasive, and it shows an enormous range of physiological process in the body at any given time. Changes in blood profile can be due to disease and nutritional stress [44], age and sex [45] and breed.

Parameters	T1	T2	Т3	T4	Т5	S/L
Pack cell volume (%)	39.06±0.21	41.91±0.33	57.11±0.11	57.22±0.41	57.32±0.12	Ns
Hemoglobin (g/dl)	8.13±0.09	11.3± 0.05	13.13±0.07	13.15±0.10	13.44±0.17	Ns
RBC (×10 ⁶ /L)	6.11±0.19	7.01±0.17	7.11±0.15	7.18±0.45	7.33±0.56	Ns
MCV (fl)	60.11±0.87	63.12±0.66	68.10±0.19	69.14±0.09	70.19±1.22	Ns
MCH (pg)	19.18±1.22	19.45±1.34	20.14±1.82	20.44±1.09	20.66±1.54	Ns
MCHC (%)	30.10±0.56	31.23±0.97	31.77±0.87	32.10±0.37	32.51±0.66	Ns
WBC (×10 ⁶ /L)	10.02±0.89	10.66±0.78	11.03±0.80	11.35±0.91	12.10±0.82	Ns
Lymphocytes (%)	50.12±0.34	51.71±0.54	52.13±0.65	52.33±0.80	52.36±0.36	Ns
Monocytes (%)	1.31±0.05	1.28±0.01	1.23±0.03	1.27±0.00	1.20±0.03	Ns
Neutrophils (%)	33.12± 1.10	33.03±1.26	33.18±1.14	33.27±1.53	33.10±1.10	Ns
Basophils (%)	0.72±0.05	0.67±0.01	0.58±0.00	0.71±0.02	0.69±0.01	Ns
Eosinophils (%)	5.11±0.04	4.54±0.18	4.32±0.01	4.59±0.02	5.01±0.06	Ns

 Table 7: Hematological parameters of growing rabbits fed varying inclusion of WMR.

Ns: No significant (p>0.05) difference.

Table 8 shows the serum biochemistry of rabbits fed dietsobtained are 10.supplemented with WMR. The results revealed that the values3, 4 and 5 respectiveobtained in this study were not significantly (p>0.05) different8.87, 8.90, 9.10by the dietary inclusion of WMR across the treatment. The totalThe values of SCprotein values obtained is 4.45 - 4.87 (g/dl) which fall within(U/L) while thosthe normal ranges of 5.40-7.50 (g/dl) previously reported byranges reportedMedirabbit [46], this shows that the protein level in the diet isparameters of Nein line with the nutritional requirement of the animal, whichthe liver of the awill assist in tissue and cell rebuild after stress. Uric acid valuesthe liver of the aTable 8: Serum biochemical profile of growing rabbits fed varying inclusion levels of WMR.the liver of the a

obtained are 10.4, 10.1, 10.7, 11.2 and 11.5 (mg/l) for diets 1, 2, 3, 4 and 5 respectively while those of creatinine (mg/l) are 7.12, 8.87, 8.90, 9.10 and 9.22 for diets 1, 2, 3, 4 and 5 respectively. The values of SGOT obtained ranges between 12.03 and 14.60 (U/L) while those SGPT (8.01 – 8.44 U/L) fall within the normal ranges reported by Ozkan [47-56] on the normal biochemical parameters of New Zealand white rabbits. This therefore implies that the test material (WMR) inclusion in the diet did not affect the liver of the animals [57].

Parameters	Treatments							
	T1	T2	Т3	T4	Т5	S/L		
Total protein (g/ dl)	4.45±0.67	4.74±0.74	4.57±0.55	4.82±0.63	4.87±0.44	Ns		
Albumin (g/dl)	2.34±0.45	2.61±0.31	2.47±0.65	2.66±0.12	2.56±0.18	Ns		
Globulin (g/dl)	2.11±0.03	2.13±0.08	2.09±0.61	2.16±0.80	2.31±0.01	Ns		
Uric acid (mg/l)	10.4±0.01	10.1±0.04	10.7±0.91	11.2±0.06	11.5±0.03	Ns		
Creatinine (mg/l)	7.12±0.12	8.87±0.18	8.90±0.44	9.10±0.39	9.22±0.83	Ns		
SGOT (U/L)	14.60±0.01	12.23±0.03	12.54±0.21	12.32±0.14	12.03±0.03	Ns		
SGPT (U/L)	8.44±0.33	8.41±0.26	8.23±0.00	8.03±0.35	8.01±0.66	Ns		

Ns: No significant (p>0.05) difference.

Conclusion

a. WMR could be included in the diet of weaner rabbits up to 6% without any deleterious effect on the health and general performance of rabbits without causing any pathological abnormalities in their blood profile.

References

1. Asar (2010) Utilization of Corn-cob meal and faba bean straw in growing rabbits' diets and their performance, digestibility and

economical efficiency. Egypt Poultry Science. 30: 415-442.

- 2. Gladvin G, Sudhaakr G, Swathi V, Santhisri K (2017) Mineral and vitamin content in water melon peel. International Journal of Current Applied Science pp. 129-133.
- 3. Yamaguchi M (2006) World Vegetables: Principles, Production and Nutritive Values. AVI Publishing Co., Westport, USA.
- Gin WA, Jimoh A, Abdulkareem AS, Giwa A (2014) Production of activated carbon from watermelon peel. International Journal of Scientific & Engineering Research, 5: 2.

- Lius Pons (2003) Exploring important medicinal uses for watermelon rinds. United States Department of Agriculture. Agricultural Research Service.
- 6. Owen JE (1981) Rabbit meat production for developing countries. Biochemistry Journal 32: 2-11.
- Fila WA, Ifam EH, Johnson JT, Odey MO, Effiong EE, et al. (2013) Comparative proximate compositions of watermelon Citrullus Lanatus, Squash cucurbita pepo'l and Rambutan, Nephelium Lappaceun. International Journal of Science and Technology, 2(1): 81-88.
- Okai DB, Boateng M, Amaoh KO, Johnson LD (2010) Studies on dried water melon rinds on the nutrient composition and effects on growth performance and carcass characteristics of Albino rats. Proc. 30th GASA Conference, USA.
- 9. Bush BM (1991) Interpretation of Laboratory Results for Small Animal Clinicals. Blackwell scientific publication London, UK.
- 10. Scott HM (1965) Measurement of Albino Acid content of fish meal protein by chick growth assay, pp: 395-465.
- 11. Harbone IB (1973) A guide to modern techniques to plant analysis. Chapman and hall, New York, USA.
- 12. Onwuka GI (2005) Food analysis and instrumentation, theory and practice. Nap. Print Lagos, Nigeria.
- Adaku AO, Olukosi (1990) Rabbit management for the tropics: production, processing, utilization, marketing economic practical training research and prospects. Living books Series, Abuja.
- 14. Anugwa FOI, Adesua M, Ikurior SA (1998) Effects of dietary crude fiber levels on the performance, nutrient digestibility and carcass characteristics of weanling- growing rabbits. Proceedings of the 25th Silver Conference of the Nigeria Society of Animal Production Abeokuta.
- 15. Olatunji AK, Alagbe JO, Hammed MA (2016) Effects of varying level of Moringa olifera on the performance of weaner rabbits. International Journal of Science and Research. 5: 6.
- 16. Feumba Dibanda Romelle, Ashwini Rani P, Ragu Sai Manohar (2016) Chemical composition of some selected fruit peels. European Journal of Food Science and Technology, 4(4): 12-21.
- Johnson JT, Iwang EU, Hemen JT, Odey MO, Effiong EE, et al. (2012) Evaluation of anti-nutritional content of watermelon Citrullus lanatus. Annals of Biological Research, 3(11): 5145-5150.
- Olayinka BU, Etejere EO (2018) Proximate and chemical composition of (Citrullus lanatus) and Cucumber. International Food Research Journal 25(3): 1060-1066.
- 19. Yamaguchi Onwuka GI (2005) Feed analysis and instrumentation: theory and practice Naphthalic prints Surulere Lagos pp. 219-230.
- Adeyeye EI (2000) Bio-concentrations of macro and trace minerals in four prawns living in Lagos lagoon. Pak J Scient Ind Res 43: 367-373.
- 21. Amy E Halls (2014) Nutrient requirements for rabbits. Shur-Gain, Nutreco Canada Inc.
- 22. Egbuonu ACC (2015) Assessment of some anti-nutrient properties of water melon rind and seeds. Research Journal of Environmental Sciences, 9: 225-232.
- 23. Ella WA, Ham EH, Johnson JT, Odey MO, Effiong EE, et al. (2013) Comprehensive proximate compositions of water melon. International Journal for Science and Technology. 2(1): 81-88.
- 24. Alagbe JO (2017) Nutritional evaluation of sweet orange (Citrus sinensis) fruit peel as replacement for maize in the diet of weaner grass cutters. Scholarly Journal of Agricultural Science 6(8): 272-282.
- 25. Hanan MA, Al-Sayed, Abdelrahman R Ahmed (2013) Utilization of water melon rinds and sharly melon peels as a natural source of

dietary fibre and antioxidant in cake. Elsevier Annals of Agricultural Science. 58(1): 83-95.

- 26. Bako SP, Bakfur MJ, John I, Bela EL (2005) Int Jour Bot 1(2): 147-150.
- 27. Adesanya, Sofowora (1983) Biological standardization of Zanthoxylum roots for antisickling activity. Planta Medica 48: 27-33.
- 28. Adisa RA, Choudhary EA, Adenoye GA, Olorunsogo OO (2010) Hypoglycaemic and biochemical properties of Cnestis ferruinea, African Jou. Complementary Alternative Medicine, 7: 185-194.
- 29. Cheeke ON, Nobert HO (2000) Serum biochemical parameters in clinically healthy dogs in Ibadan. Tropical Vert. 16: 3-4.
- 30. Farinu GO, Odunsi AA, Akinlade JA (2005) Introduction to animal nutrition. Oluseyi Printing Press Ltd, Ibadan. ISBN 978-169-332-2.
- 31. Collins GW, Perkins-veazie K, Spears PL, Claypool RA, Baker BA (2007) Water melon consumption increases plasma arginine concentrations in adult. Nutr Mar 23(3): 261-266.
- 32. Leterme P, Buldgen A, Estrada F, Londono AM (2006) Mineral components of tropical fruits and unconventional foods of Andes and rain forest of Colombia. Food Chemistry 95: 644-652.
- Moon JK, Shibamoto T (2009) Antioxidant assay for plants and food components. Journal of Agriculture and Food Chemistry. 57: 1655-1666.
- 34. Haruna IM, Muhammed AS (2018) Carcass characteristics of weaner fed concentrate diets with graded levels of yam peel meal. Nigerian Journal of Animal Science, 20(4): 561-566.
- 35. Ojabo LD, Adenkola AY, Odaudu GI (2012) Effects of dried sweet orange peel meal on the performance and hematology of rabbits. Veterinary Research 5(2): 26-30.
- 36. Ishaya B Kaga (2013) Biological and carcass characteristics of rabbits fed Delonix regia meal diets. Biological System Open Access. 2(4): 1000120.
- Flecknell P (2000) Manual of rabbit medicine and surgery, Gloucester, British Small Animal Veterinary Association.
- Mitruka BM, Rwansley H (1977) Clinical, biochemical and hematological references values in normal experimental animals. Masson publishing U.S.A Inc. New York, USA, pp. 106-112.
- 39. Togun VA, Oseni, BSA (2005) Effect of low-level inclusion of biscuit dust in broiler finisher diet apparently healthy red sokoto goats. Proc of the 27th Annual Conf. of Nig. Soc. For Anim Prod p. 50-53.
- 40. Doyle D (2006) William Hawson. The father of Heamatology. Br J Hermatology, 133: 375-381.
- 41. Yeong SW (1999) Efffect of dietary protein on growth performance in village chicken. Proc. National IRPA Seminar Agric Sector, 2519-2520.
- 42. Abass PA, David DI, Edward A, Zira KE, Midak A (2012) Effect of age, sex and management system on some hematological parameters of intensively and semi intensively keep chicken in mubi, Adamawa state, Nig. Iranian Jou of Applied Ani Sci 2(3): 277-282.
- 43. Esonu BO, Emenalom OO, Udedibie A, Berbert U, Ekpor CF, et al. (2012) Performance and chemistry of weaner pigs fed raw mucuna bean meal. Trop Anim Prod Invest 4: 49-54.
- 44. Afolabi KD, Akinsoyinii AO, Olajide R, Akinleye SB (2001) Haematological parameters of the local chickens fed varying dietary levels of palm kernel cake.
- 45. Cheeke ON, Nobert HO (2000) Serum biochemical parameters in clinically healthy dogs in Ibadan. Tropical Vert 16: 3-4.
- 46. Medirabbit (2011) Complete blood count and biochemical reference values in rabbits.

- 47. Ozkan C, Kaya A, Akgul Y (2012) Normal values of hematological and serum biochemical parameters in serum and urine of New Zealand white rabbits. World Rabbit Science, 20: 253-259.
- National Research Council (1977) Nutrients requirements for rabbits, second edition. National Academy of Science, Washington D.C p. 10-15.
- 49. Ibrahim H, Hassan MR, Abdu SB, Chidinma F, Aliyu ZI, et al. (2018) Blood biochemical profile and carcass characteristics of weaner rabbits fed varying levels of Gamba grass (Andropogon gayanus Kunth) forage. Nigeria Journal of Animal Science. 20 (4): 522-560.
- 50. Johnson JT, Iwang EU, Hemen JT, Odey MO, Effiong EE, et al. (2012) Evaluation of anti-nutrients contents of watermelon Citrullus lanatus. Annals of Biological Research 3(11): 5145-5150.
- 51. Gwana AM, Bako MM, Bagudu BY, Sadiq A, Abdullahi MM (2014) Determinations of phytochemicals, minerals and vitamins of different

007

This work is licensed under Creative Commons Attribution 4.0 License DOI: 10.19080/JDVS.2018.08.555741 varieties of water melon seeds cultivated in Borno State, North Eastern Nigeria. International Journal of Nutrition and Food Sciences, 3(4): 238-245.

- 52. Duncan DB (1955) Multiple Range and Multiple F-Test Biometrics 11: 1-42.
- 53. AOAC (2000) Association of Official Analytical Chemists. Official Methods of Analysis (19th edn), Washington, USA, p. 69-77.
- 54. Dacie JV, Lewis SM (1991) Practical Haematology (7th edn), ELBS with Church hill, England, UK.
- 55. Roschian L, Bernat E, Grubber W (1974) Enzmtrache Bestimung des gesamcholestrins in serus. l clin Chein Bioc/iem 12: 403-407.
- 56. Statistical Analysis Systems Institute Inc (1997) SAS User guide statistic, version 6 edition. Gary, New York, USA.

Your next submission with Juniper Publishers will reach you the below assets

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats
- (Pdf, E-pub, Full Text, Audio)
- Unceasing customer service
- Track the below URL for one-step submission https://juniperpublishers.com/online-submission.php