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Introduction
As the usage of internet continue to grow exponentially, the 

growth of malicious website is also seen in the environment. 
These malicious websites are created for unlawful purposes, for 
example, spam-advertising, malware propagating, and financial 
fraud through phishing and malvertising. As an example, on the 
aspect of malvertising activities, its growth has been recorded 
at a hundred and thirty-two percent in 2016 [1]. It is also 
reported by Symantec in 2016 [2] that seventy- six percent of 
serve scanned were fund to have vulnerabilities which could 
mean that it harbors malicious intention or codes. This would 
include luring unsuspecting uses to a spoof sites and obtain key 
information by impersonating valid sites [3]. These malicious 
websites not only steal or damage the info from users, but also 
let the hackers to regulate the computers. It becomes a platform 
helping diverse Internet crimes. Because of this, detecting the 
malicious sites to stay away from the damage is of a significant 
priority. What’s more, these websites often appear to be genuine 
websites. Sometimes it will request an unsuspecting user to 
install software that the machine seems to need. Another one is, 
a video website might request for a codec installation which in 
turns compromise the machine itself.

There have been many works in malicious websites detections 
efforts. The pioneering effort begins with the blacklist approach 
[4]. A blacklist is a list containing IP address information, 
website name or URLs of known malicious websites such as 
where it is listed at sites such as phishtank.com and vxvault.
net. These sites provide credible validation of whether the site 
is malicious or not since it is based on real feedback from those 
who discovered it and impacted by it. Though the credibility is  

 
high the speed of which it is updated is quite slow and since it is 
updated after and impact has potentially been made it is reactive 
in nature. Furthermore, it needs an extended time period from 
finding, verifying and upgrading a fresh malicious website to 
the blacklist. In the on the other hand, users are threatened 
by the new harmful websites. Moreover, the price and enough 
time required by making a harmful website are low. Any new 
malicious website can’t be detected by blacklist-based system 
given that they have different IP addresses and domain names. 
Beyond the reactive nature of malware detection, there are also 
significant works done in the proactive approaches of malware 
websites detection which includes blacklist [5], honey clients 
[6], machine learning techniques [7] and webpage content [8].

Related Works
In the pursuit of malicious website detection, a list of 

efforts would include leveraging capabilities that would include 
approaches such as blacklist, honey clients, machine learning, 
web page content and an integrated approach.

Blacklist Approach
A regular strategy for supporting users avoid malicious 

websites is by using the blacklist via known bad websites. 
Microsoft Internet Explorer, Google Chrome and Mozilla Firefox 
warn users when they make an effort to visit a web page present 
on a blacklist. This might also include leveraging information 
from known exterior websites such as vxvault.net and phishing.
com for example. These techniques are suffering from a few 
shortcomings like the need to upgrade it periodically, sluggish to 
reveal new harmful websites and poor overall coverage of these 
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destructive websites. However the information in the blacklist 
sites are valuable when used as an initial exposure for training 
platform [9] and predictions of potential malicious domain in 
the environment [10].

Honey clients

Figure 1: General Overview of Honey client.

Honey clients approach is considered as an effective 
technique in malicious website detection. Honey clients are 
security tools used to recognize websites that host harmful 
content. People to web sites are attacked whenever a website’s 
malicious content exploits vulnerabilities within the browser 
or the browser’s plug-ins. Honey clients works by crawling on 
the internet and scowering for malicious websites and analyze 
drive-by-download attacks [11]. These honey clients can be 
categorized by low interaction or a high interaction. Low 
interaction honey clients uses an emulator to do the crawling of 
the internet. Thus the risk of itself being infected is low [12]. 
High-interaction honey clients on the other hand are powered 
by the basic principle of monitoring system condition changes 
throughout a website visit using real web browsers installed on 

the host’s system. Websites are categorized as destructive if the 
web browser accesses or tries to modify supervised security-
sensitive listing and files [13] (Figure 1).

Machine Learning
In the machine learning space, the works on detecting mali-

cious websites focuses on URLs detectors. In the machine learning 
technique, it makes use of a collection of URLs as training data, 
and predicated on the statistical properties, find out a prediction 
function to classify an URL as malicious or benign. Thus, giving 
them the capability to generalize to brand-new URLs unlike black-
listing strategies. The primary requirement of training a machine 
learning model certainly is the existence of training data. In the 
context of malicious URL detection, it would definitely correspond 
to a collection of large numbers of URLs. By extracting decent fea-
ture representations of URLs, working out a prediction model on 
training data of both malicious and benign URLs will occur. Key 
features would include lexical features which are obtained from 
the URL string. The more common lexical features used include 
statistical properties of the URL string, its length and length of 
each components (Hostname, Primary domain etc) [14]. 

In the machine learning approaches, these features are 
extracted via static and dynamic features. In static approach, the 
URL is analyzed without the need to execute it. This method is 
considered safer than dynamic analysis due to the fact that in 
dynamic analysis mode, monitoring the behavior of the systems 
calls for abnormal behaviors which usually are potential victims 
[15], to consider any anomaly that have intrinsic risks, and so 
are difficult to implement and generalize. There are a multitude 
of machine learning algorithms in literature which can be 
directly utilized in the context of Malicious URL Detection such 
as Support Vector Machine [14-17], Logic Regression [17-19], 
Naïve  Bayes [8,18-20] and Decision Tree respectively [17,21-
22].

Page Content Analysis

Page content based approach is the more detail analysis in 
comparison to the URL based approach. This would require the 
most processing and analysis time as considerable information 
need to be extracted from a particular website. Should the URL-
based features neglect to identify a malicious URL, according 
to [18] this technique is a far more thorough analysis of the 
content-based features which can help in early threat detection. 
This approach derives key features such as HTML and JavaScript 
[8] proposed a malicious webpage detection based on dynamic 
HTML and Java Script using decision tree structured algorithm 
[23] on the other hand, proposed CANTINA which uses machine 
learning approach and leveraging HTML Document Object 
Model, search engines and third-party tools [24-27].

Critical Analysis
(Table 1)
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Table 1: In this paper, we looked into the features anddrawbacks of each method of malicious website detection.

Name Feature

Blacklist

Uses precompiled list of known malicious

Sites. The accuracy and validity is both high and based on communal feedback.

Drawback

Resource constraint which required periodic updates and hackers actively evade blacklists by making minor changes 
to the original URL [28]

Honey Client

Feature

Proactively crawls the internet and detects malicious website in a low interaction or high interaction mode.

Drawback

Prone to evasion by malicious site owners [6].

Machine Learning

Feature

Uses already existing information from the URL and develops a learning model to classify whether a site is malicious 
or benign. Classification algorithm can include Support Vector Machine, Decision Trees, etc.

Drawback

Finding correct training data is a challenge due to the generous number of instances and features [29]

Page Content

Feature

Inspects the page content and does matching calculations through comparisons with valid pages and a set of 
specified base rules.

Drawback

Requires sizable time when querying, as

Example in the Google [3].

Conclusion
In this review, we looked at multiple approaches that has 

been developed in detecting malicious websites. Malicious 
URL detection plays a crucial role for most cyber security 
applications, and the detection efforts are plays a crucial part 
of it. In this review, we carried out a review on Malicious URL 
detection using methods such blacklisting, honey customers, 
machine learning and web page content analysis methods. 
In this review, we categorized most, if not absolutely all, its 
features, related works connected and how it operates. Finally, 
we highlighted its features and drawbacks. We’re able to see still 
even more opportunities specifically in the device learning space 
in improving the Malicious Website detection agenda.
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