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Introduction
As a high grade tumor, uterine serous carcinoma (USC) 

accounts for less than 10% of endometrial carcinomas (EC), but 
in association with endometrial clear cell carcinoma (CCC) and 
grade 3 endometrioid carcinoma is responsible for 70-75% of 
EC deaths [1] and per se accounts for 39% of this cancer related 
deaths [2]. As a prototype of type II endometrial carcinoma, 
USC is an aggressive disease and near 60-70% of the patients 
present with extrauterine spread at the time of diagnosis [2]. 
In contrast with more common type I endometrial carcinoma, 
serous carcinoma tends to occur in older age group and usually 
diagnosed at advanced stages [3]. Even among women who have 
not myometrial invasion, 33-50% of them will show extrauterine 
spread in comprehensive staging [4]. Its tendency for early 
spread, leads to upstaging of 50-70% of clinically stage I cancers  

 
at the time of operation [5]. Presentation of 46% of patients with 
USC and endometrial clear cell carcinoma in stage II-IV compared 
to 21% for all endometrial cancers confirms the common 
perception that these histotypes carry a worse prognosis due to 
advanced disease at the time of diagnosis [6]. Although the term 
“Endometrial Intraepithelial Carcinoma”(EIC) is widely used 
to designate the precursor lesion of uterine serous carcinoma, 
it should be acknowledged that “early serous carcinoma” or 
other alternative diagnostic terms have been suggested for use 
in clinical practice, in recognition that some serous carcinomas 
without invasion in the uterus are associated with extra-uterine 
spread [7,8]. For this reason Clement and Young considered EIC 
(Figure1) as a tiny focus of serous carcinoma and did not qualify 
it further other than to note its size and location and stressed 
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that pathologists should indicate its malignant potential , in the 
pathology report when it is unaccompanied by typical serous 
carcinoma [9].

Figure 1

From histologic standpoint, USC presents as a high grade 
malignant tumor and shows slit like glands, short and thick 
papillary structures or solid aggregation of malignant epithelial 
cells (Figure 2). In high magnification the neoplastic cells have 
notable pleomorphic nuclei, prominent nucleoli and numerous 
mitosis including atypical types (Figure 3). It has been widely 
accepted that USC evolves via molecular genetic pathway(s) 
that differ from those of conventional endometriod carcinoma 
[10-15]. Although the dualistic module proposed by Bochman 
[16] has been conceptually useful and provided a framework for 
other important works, it is unable to explain these diversities 
in term of histology and molecular change in each of subgroups. 
Numerous studies proposed that P53 mutation occur as an 
early event in the endometrial serous carcinogenesis [17-20] 
(Figure 4) and based on a recent study on latent precursor (P53 
signature) in the endometrial polyps [21], it has been suggested 
that the mutation in PT53 may develop before apparent 
morphologic atypia (p53 signature), associate with minor 
epithelial atypia (EmGD) or occur in pre-existing malignant 
lesions of endometrium ( high grade endometriod carcinoma) 
resulting in biphasic tumor pattern.

Figure 2

Figure 3

Figure 4

Early detection through minimally-invasive approaches 
appears to be the gold strategy decreasing the USC related 
mortality .During last decades researchers have been interested 
in discriminating the specific and sensitive biomarkers such 
as microRNAs detectable by simple methods. These recently 
explained microRNA can be useful in monitoring the tumor 
response against different treatments as well as in tracing of 
disease process [22]. However, the early stage diagnosis of 
cancers by microRNAs is still in its infancy.

MicroRNAs are small non-coding RNAs play special roles 
in post-transcriptional regulation of genes and are a large 
class of noncoding RNAs evolutionarily conserved in mammals 
[23]. Detection of miRNAs can be directed through various 
approaches including qRT-PCR, microarray and sequencing 
[24,25]. Accumulating studies have been conducted to define a 
valuable pattern of micoRNAs to improve early diagnostic and 
prognostic approaches. Accordingly, researchers from all over the 
world investigated microRNAs profiling in endometrial serous 
carcinoma patients. Current review has focused on the main 
genetic pathways involved in uterine serous carcinogenesis and 
latest literatures on microRNAs biomarker discovery validated 
for USC. 

1-Molecular Carcinogenesis in Uterine Serous 
Carcinoma

Endometrial Serous Carcinomas commonly show mutation 
in p53, over-expression of cyclin E and HER2/neu, p16 dys-
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regulation, genetic alternations in E-cadherin and aberrations 
within the PI3K pathway [26]. A genome-wide analysis directed 
by Kuhn and coworkers showed that disruptions in p53, PI3K, 
and cyclin E pathways, were significantly detected in uterine 
serous carcinomas [27].

P53 
Mutation in p53 is the most characteristic genetic alteration 

of non endometriod endometrial carcinomas [28]. As a tumor 
suppressor gene, p53 is located in 17p13.1, encodes the nuclear 
phosphoprotein p53 [29], and has important roles in preventing 
of inappropriate cell proliferation and maintaining the genome 
integrity following genotoxic stresses [30]. Loss of p53 function 
leads to apoptosis inhibition [31] and mutations in p53 can 
trigger signaling for transforming growth factor b (TGF-b) 
receptor, epidermal growth factor receptor, and mesenchymal 
epithelial transition (MET) [32,33].

The level and activity of p53 is regulated by a complex 
network of several proteins such as HPV16 E6, WT-1, E1B/E4, 
SV40 T-antigen, MDM2, JNK, Pirh2, and PARP-1 [34]. Findings 
suggest that there are significant associations between advanced 
stages and high grade tumors with p53 mutations resulting in 
frequently poor outcome [35]. One hypothesis suggests that 
mutation in one allele occurs early during the development of 
serous carcinoma’s precursor, meanwhile, normal second allele 
deficiency directs the progression toward serous carcinoma 
[36]. Another hypothesis discusses that serous carcinoma may 
be evolved through p53 mutation in previous endometrioid 
carcinoma based on presence of mixed endometrioid and serous 
carcinomas [37].

P16 (CDKN2A)
P16 located on chromosome 9 (9p21) [38], acts as a tumor-

suppressor and negative regulator of the cell cycle [39] which 
is suggested as an critical marker to discrimination of uterine 
adenocarcinoma subtypes [40]. P16 inactivation was detected in 
approximately 45% of serous carcinomas. However, it is still not 
entirely clear what mechanism is involved in inactivation of P16 
[41].

PI3K pathway
The phosphatidylinositol-3-kinase -AKT - mammalian target 

of the rapamycin (mTOR) pathway, an important mediator of 
different cell functions including the regulation of apoptosis, 
cell growth and proliferation, more frequently are disrupted in 
human malignancies [42]. The more common mutations in PI3K 
pathway are associated with PTEN, PIK3CA, and PIK3R1 [43-45].

Wilms tumor 1 gene (WT1)
The WT1 is a tumor suppressor gene located on the short 

arm of chromosome 11 at p13 [46]. There is a significant direct 
correlation between WT1 expression and histological grade as 
well as a trend toward worse clinical prognosis [47].

E-cadherin
E-cadherin as a key member of adhesion factors has an 

important role in cell polarity and integrity preservation and 
encoded by CDH1 gene [41,48]. It has extracellular Ca2+ binding 
sites to maintain intercellular stability by cell adhesion. In order 
to keep normal structure of the cells, the intracellular section 
of E-cadherin interplays with β-catenin and forms connections 
[49]. Reduced E-cadherin expression is associated with advanced 
stages in endometrial cancers [48]. Evidence showed that down-
regulation of E-cadherin may be as a result of hypermethylation 
of promoter or Loss of heterozygosity [50].

HER2/neu
A multiple lines of evidences demonstrate that gene 

amplification of epidermal growth factor receptor II or HER2/
neu and its protein over- expression are associated with several 
human cancers including endometrial malignancies and poor 
prognosis [51]. This gene is defined as an essential oncogene 
has functions in signal transduction. HER2 up-regulation or 
amplification is more common among USC in comparison with 
endometrioid carcinoma [52-54] that comes along unfavorable 
prognostic factors.

Cyclin E
Cyclin E encoded by CCNE has key function in the regulation 

of G1 phase to S phase transition during cell cycle. Up-regulation 
of cyclin E leads to speed up in cell cycle through G1 phase by 
interplaying with cyclin-dependent kinase-2 (CDK-2). Findings 
suggested an important association between overexpression of 
cyclin E and endometrial carcinomas, although details of involved 
mechanisms remain to be elucidated. Cassia and coworkers for 
the first time reported that overexpression of cyclin E could be as 
a result of gene amplification which is more commonly detected 
in non-endometrioid endometrial carcinomas [55].

MicroRNAs Regulatory Function
MicroRNAs regulate the expression of mRNA either by 

its degradation or translation silencing, depending on the 
recognition of a target sequence within 3′ UTR of mRNAs. 
MicroRNAs recognize a 6-7 nucleotide region in their target 
mRNAs complementary to the “seed” sequence of the microRNA. 
This seed site is determined between nucleotide positions 2 to 
8 from the 5′ region of the microRNA. In case of accurate base-
pairing with the 3′ UTR region of the mRNA target, microRNAs 
direct a cleavage in the target strand. Although, inaccurate 
complementary causes the inhibition of mRNA translation 
either at initiation or during elongation phases [22,56,57]. It 
should be pointed that a unique microRNA may have multiple 
mRNA targets. Also, a set of microRNAs may be included in the 
regulation of a single mRNA [58-60]. 

Function of microRNAs in cancer
Capability of microRNA to use as novel biomarkers: 

Detection of microRNA- based biomarkers will affect the 
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diagnostic approach in personalized medicine dramatically. Lin-
4 was the first microRNA distinguished in C. elegans acting as 
down- regulator of LIN-14 [23]. Additionally, there are a number 
of reports suggesting the presence of microRNAs in body fluids 
e.g. blood, released by tumor cells [61-63].

For the first time, Lawrie and colleagues recognized the 
first blood- based microRNA associated with tumor in sera of 
B-cell lymphoma subjects [64]. Afterward, several groups have 
endeavored to detect specific and sensitive tumor secreted 
biomarkers related with different malignancy. On the other 
hand, microRNAs may be proper therapeutic agents holding 
promise as candidates for microRNA inhibition and replacement 
therapies in targeted treatments [65]. Also, they preserve 
essential features, such as special stability in body fluids, simple 
and pervasive determination approaches and more importantly 
the ability to screening and regular monitoring of the diseases 
and its response to therapies, encouraging the researchers in 
microRNA baesd- biomarker discoveries [66].

Further deep analysis suggest that tumor cells direct the 
signaling mediators like microRNAs in cell to cell communications 
and persuade transformation in the neighboring or distant 
regions. Accordingly, the cells more likely secrete distinct 
microRNAs and the other cells recognize and taken up them by 
molecular mechanisms remain to be fully discovered [67,68]. In 
this regard, the cells take special measures to keep microRNAs 
out of digestion by endogenous RNase including their association 
with RNA binding proteins like Argonaute2 [68].

Misregulation of microRNAs in cancers: The literatures 
reported both oncogenic and tumor suppressive functions for 
these group of noncoding RNAs. It was shown that microRNAs 
can disturb normal homeostasis of the cells and induce 
abnormality in various pivotal pathways ultimately lead to 
increased proliferation, promotion of angiogenesis, epithelial- 
mesenchymal transition, inhibition of apoptosis, invasion, 
metastasis, resistance against therapies and so on [69-71]. 
Moreover, argonaute2 [72-74] DROSHA and DICER [59-75] as 
critical components of the microRNA regulatory pathway, might 
be deregulated in some malignancies. 

MicroRNA biomarkers detected in endometrial serous 
carcinoma during recent years: A number of Investigations 
have evaluated the possible relation between endometrial 
serous carcinoma and certain microRNAs. A study by Hiroki 
and colleagues suggested 54 down-regulated (such as miR-
101, miR-10b*, miR-29b and miR-152) and 66 upregulated 
microRNAs (including miR-205, miR-200a and miR-200b), could 
be considered as markers to discriminating endometrial serous 
carcinoma patients from normal cases. They also considered 
any significant relationship between differential expressions of 
miRNAs with clinicopathological characteristics of the patients. 
Their results demonstrated that down- regulation of miR-
10b*, miR-29b, and miR-455-5p detected in patients with more 

invasive stages, had key roles in cancer metastatic progression 
[76].

At the same time, another group reported that miR-22 is 
specifically upregulated in endometrial serous carcinomas 
compared to uterine carcinosarcomas but the expression of 
miR-182 is reduced [77]. In another study, Hiroki and coworkers 
showed that the expression of miR-34b decreased in comparison 
with normal subjects. Their findings suggested that CpG island 
hypermethylation is associated with down-regulation of miR-
34b expression [78].

In a more comprehensive study Devor, et al. provided the 
microRNA pattern of endometrial endometrioid adenocarcinomas 
and serous adenocarcinomas. They significantly detected 
down- regulation of seven microRNAs and upregulation of 13 
microRNAs in both groups. However, each type of endometrial 
cancer had also specific pattern of microRNA misregulation. For 
example, the expression of miR-155 and miR-370 significantly 
increased in serous adenocarcinomas in comparison with 
control cases (p=0.049 and p=0.024, respectively) [79]. A recent 
study, defined that miR-106b was down-regulated in highly 
invasive endometrial serous carcinoma cells. It could conduct 
the suppression of TWIST1 expression, as an essential mediator 
of epithelial mesenchymal transition (EMT), resulting in more 
invasive phenotypes of endometrial cancers [80].

In another investigation, the expression of miR-182 and its 
target (Cullin-5, a cullin-RING E3 ubiquitin ligase have function 
in various types of malignancies) were assessed by Devor and 
coworkers. They reported significantly reduction of Cullin-5 
expression in both case groups (endometrioid and serous 
endometrial adenocarcinomas) compared with normal samples. 
Although, they showed that serous cancer subjects had more 
decline (-4.3-fold) than endometrioid types (-2.9-fold). They 
asserted that overexpression of miR-182 led to the reduction of 
Cullin-5 expression [81].

A more recent case- control study, exposed miRNAs pattern 
in African- American cases having uterine serous carcinoma 
and compared them with matched controls. The patients were 
followed- up for a medium time of 43 months. They declared that 
649 micoRNAs had differential expression between tumor and 
normal subjects and presented miR-223 as a death risk factor. 
Their results displayed overexpression of miR-223 associated 
with disease recurrence and poor prognosis [82].

Conclusion
MicroRNAs as mediators of pivotal regulatory pathways have 

certain notable features awarding possibility to use them as novel 
diagnostic and prognostic biomarkers, targeted anti-cancer 
therapies and overcoming drug resistance. Despite the wide 
variety of microRNAs assumed to be involved in endometrial 
serous carcinomas, in some cases the inverse findings are 
remarkable from one study to another, more likely as a result of 
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the inconsistency in sample preparation procedures, adopting 
the determination and normalization methods and especially 
the differentiation caused by genetic pools and environmental 
factors of initial subjects. As yet, the lack of a worldwide standard 
method to determination of microRNAs has been led to delays in 
its transition from lab to clinic.

Common treatments in combination with microRNA 
replacement and prophylactic strategies have obtained 
substantial promise to cure more invasive cancers. However, 
future studies should answer which panel of microRNAs has 
actually differential expression between endometrial serous 
carcinoma in comparison with normal controls and other types 
of endometrial carcinoma. Altogether, more prospective and 
comprehensive studies using standard procedures are necessary 
to exactly elucidation of microRNA- based biomarkers for early 
detection and predicting the invasive phenotypes.
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