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The Place of invitro Follicle Growth and Maturation in 
Fertility Preservation of Ovarian Cancer Patients

Most ovarian cancer is diagnosed in women of non 
reproductive age, but the percentage of young women who 
survive ovarian cancer has increased as a result of improvements 
in diagnosis and earlier treatment [1]. These women are natural 
candidates for fertility preservation. If unilateral or bilateral 
salpingo-oophorectomy has to be accompanied by hysterectomy, 
the usefulness of fertility preservation techniques will depend 
on the possibility of surrogate motherhood. However, the uterus 
can be saved in some patients with existing ovarian cancer and, 
in particular, in those in whom oophorectomy is performed as a 
prophylactic intervention, such as in healthy carriers of a BRCA1 
or BRCA2 mutations [2]. Cryopreservation of mature oocytes 
appears to be the first-choice treatment in these cases. However, 
controlled ovarian hyperstimulation, required for achieving the 
optimal quality and quantity of oocytes to be cryopreserved, can 
delay cancer treatment, may stimulate the rapid prolif¬eration 
of hormone-dependent cancer cells and is not possible in 
prepubertal girls [1]. Consequently, in vitro ovarian follicle 
growth and maturation remains the only possibility in some 
clinical scenarios. 

invitro Ovarian Follicle Growth and Maturation: The 
State of the Art

Methods for invitro growth and maturation of primordial 
ovarian follicles have been attempted in different mammalian 
species, but the birth of live off spring after in vitro fertilization 
of the resulting oocytes has only ever been achieved in mice 
[3,4]. In spite of exhaustive efforts [5], these results failed to be 
reproduced in humans. Even though the development of oocytes 
originating from human unilaminar follicles up to the metaphase 
II stage was achieved by using a multi-step culture system, 
fertilization of these oocytes was not attempted [6]. Similarly, 
metaphase II oocytes were obtained, with the use of different 
culture systems, from primordial follicles of nonhuman primates 
and domestic ruminant species [7-9], but all failed to produce 
live off spring after invitro fertilization and embryo transfer. 

Why Do the Methods Developed in Mice Fail in 
Humans?

The clue to this question may be related to the differences 
in the onset of embryonic gene activation between mice and 
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humans, discovered 30 years ago. While the mouse embryonic 
genome begins to be expressed as early as the 2-cell stage [10], 
gene activation is delayed until between the 4-cell and the 8-cell 
stages in humans. This discovery was definitely confirmed 
30 years ago [11,12], although it had already been suggested 
by previous autoradiographic studies on RNA synthesis in 
human embryos [13,14]. Interestingly, a similar delay in the 
embryonic gene activation, as compared with the mouse, is 
also characteristic of cow, sheep and pig embryos [15], other 
mammalian species in which the techniques for primordial 
follicle growth and maturation, developed in the mouse, do not 
work correctly.

The delayed onset of embryonic gene expression in human, 
cow, sheep and pig embryos, as compared with the mouse, 
means that a longer period of early embro development is 
controlled by maternally derived molecules stored in the oocyte 
cytoplasm, mainly messenger RNA (mRNA). Stored maternal 
mRNA is protected against degradation within the oocyte 
cytoplasm by polyadenylation (addition of multiple adenosine 
monophosphates to the RNA molecule), and changes in the 
degree of polyadenylation during embryo development also 
regulate the function of the respective RNA species [15]. After 
the onset of embryonic gene activity, maternally derived mRNA is 
being increasingly degraded. However, experiments with human 
embryos have shown that, in spite of its progressive loss, oocyte-
coded message continues to be involved, together with the new 
embryo-derived message, in relatively late developmental events, 
such as cell polarization, endocytotic activity and the formation 
of intercellular junctional structures [16]. In this way oocyte-
coded message may contribute to essential developmental 
events taking place even after embryonic gene activation, such 
as the differentiation of the first two embryonic cell lineages-
the inner cell mass and the trophectoderm [16]. Some of the 
key maternal proteins encoded by maternal mRNA have been 
determined, primarily using genetically modified mouse models, 
and shown to be implicated in various aspects of early embryonic 
development, including maternal mRNA degradation, epigenetic 
reprogramming, signal transduction, protein translation and 
initiation of embryonic genome activation [17].

In all species studied so far, invitro culture of ovarian cortex 
leads to an accelerated growth of primordial follicles as compared 
with the invivo timing [5]. In view of the above interspecies 
differences in the onset of embryonic gene expression, this 
acceleration may be of little importance in the mouse as 
compared to the human. In fact, synthesis of stored maternal 
mRNA in oocytes ceases relatively early in folliculogenesis, 
before the beginning of the antrum formation, and fully grown 
oocytes become transcriptionally inactive and only utilize 
transcripts previously synthesized and stored during earlier 
development [18]. Consequently, the acceleration of primordial 
follicle growth during invitro culture may not leave to the oocytes 
of the species with delayed embryonic gene activation enough 

time to synthesize and store all information necessary for the 
early embryonic development. 

Practical Implications and Future Prospects
The lessons derived from the above studies on gene activity 

regulation during early human development suggest that common 
mice do not represent a good animal model for the development 
of invitro culture systems for invitro growth and maturation of 
human primordial follicles. Fortunately, a recent publication [19] 
has reported data showing that a particular mouse subspecies, 
the spiny mouse (Acomys cahirinus), shares basic features of 
embryonic gene activation with humans and may thus represent 
a closer model for the study of human ovarian cortex invitro 
culture. The spiny mouse model can be used to design adequate 
invitro culture systems for primordial follicles, allowing the 
synthesis of a sufficient stock of the key regulatory molecules, 
to be used in the early embryonic development, in the resulting 
oocytes. This will hopefully help resolve the current problems of 
fertility preservation by invitro culture of the ovarian cortex in 
ovarian cancer patients.
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