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Abstract

Introduction: Ovarian cancer (OC) has a high mortality rate and limited treatments, necessitating novel therapeutic targets and biomarkers.
Objective: Identify differentially expressed genes (DEGs) in OC, assess their prognostic value, and discover potential therapeutic molecules
through gene expression analysis and computational docking. Materials and Methods: Analyzed 4204 DEGs using gene expression profiling.
Survival and protein-protein interaction (PPI) networks identified key genes. GEPIA and Oncomine validated expression and prognosis. Virtual
screening and Connectivity Map (CMap) analysis pinpointed inhibitors. Results: Among DEGs, 100 had survival significance. Key pathways
included p53 signalling and cell cycle regulation. Eight hub genes (AURKB, CCNB1, CCNB2, CDK1, CENPA, CENPF, FOXM1 and NEK2) were central
to disease progression. FOXM1, overexpressed in OC, was a promising target. ZINC13597767 was identified as a potential FOXM1 inhibitor.
CMap linked trichostatin A and vorinostat to OC gene suppression. Discussion: Cell cycle genes, especially FOXM1, drive OC progression.
Computational screening highlights FOXM1 inhibitors and epigenetic drugs (trichostatin A, vorinostat) as therapeutic candidates. Conclusion:
FOXM1 is a key therapeutic target. Integrating transcriptomics and drug screening accelerates OC drug discovery, with FOXM1 inhibitors and
epigenetic agents warranting further study.
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Introduction Omnibus (GEO) have been pivotal in identifying differential
gene expression profiles that shed light on OC pathogenesis
[7]. For instance, comparative analyses of high-grade serous
carcinoma and normal ovarian epithelium, such as those provided
by datasets GSE7463 and GSE14407, have elucidated the key
oncogenes and tumor suppressor genes that drive the aggressive
nature of the disease [8]. To address the complexity of OC, we
employed a multifaceted approach that integrated comprehensive
gene expression analysis with functional validation to identify
novel therapeutic targets. Differentially expressed genes (DEGs)
were identified using GEO2R [9], adhering to stringent selection
criteria (adjusted p < 0.05, and log2(fold change) > 1.5) to ensure
the biological relevance of the findings. The use of Venn diagrams
to visualize DEG overlaps across multiple datasets allows for the
identification of consistent gene targets [10], providing a robust
foundation for subsequent analyses.

Ovarian cancer (OC) is one of the most formidable challenges in
gynecological oncology owing to its high mortality rate, late-stage
diagnosis, and resistance to conventional therapies [1]. Despite
advancements in surgical techniques and chemotherapeutic
regimens, the prognosis of patients with advanced-stage OC
remains dismal [2], highlighting the urgent need for novel
therapeutic strategies. The absence of effective early detection
methods further complicates this problem [3], resulting in the
majority of cases being diagnosed at a late stage when treatment
options are limited and often ineffective [4]. Recent technological
advancements in high-throughput genomics have revolutionized
our understanding of cancer biology [5]. Gene expression profiling,
enabled by tools such as microarrays and RNA sequencing, has
provided deepinsightsinto the molecularmechanismsunderlyning
OC [6]. Datasets such as those available from the Gene Expression
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To further elucidate the biological significance of these DEGs,
functional annotation was performed using Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses using the DAVID database [11]. These analyses revealed
the biological processes (BP), molecular functions (MF), and
cellular components associated with the DEGs, as well as the
pathways that they regulate. Such functional insights are crucial
for identifying the molecular mechanisms underlying OC and
potential pathways for therapeutic interventions. Additionally,
a protein-protein
conducted using STRING and Cystoscope [12] to explore the
interactions between DEGs and identify key regulatory nodes.
This network-based approach highlights central genes and
modules with significant interactions, which are prime candidates
for therapeutic targeting. The identification of hub genes with
high centrality within the network provided valuable insights
into potential drug targets and their roles in OC pathology. To
validate the clinical relevance of these identified hub genes, their

interaction (PPI) network analysis was

expression levels were assessed using resources such as GEPIA
and Oncomine [13]. These tools facilitate the comparison of gene
expression between OC and normal tissues, and offer insights into
the prognostic significance of these genes. Immunohistochemical
analysis of patient tissue samples was also performed [14] to
confirm gene expression patterns, link gene expression data with
clinical outcomes, and enhance the translational relevance of the
findings.

In parallel, an in silico screening approach was used to identify
potential small molecule inhibitors. The Connectivity Map (CMap)
database was utilized [15] to query dysregulated genes and
identify compounds capable of reversing the OC gene expression
signature. Molecular docking studies using Auto Dock Vina
and Swiss Dock provided insights into the binding affinities of
these compounds, highlighting promising candidates for further
preclinical and clinical evaluation. By integrating gene expression
profiling with functional annotation and small-molecule screening,
this study aimed to identify novel therapeutic strategies for OC
treatment. The combination of high-throughput data analysis
with experimental validation and computational drug screening
represents a comprehensive approach to address critical
challenges in OC treatment. This integrative methodology not only
enhances our understanding of the molecular mechanisms driving
OC but also paves the way for developing targeted therapies that
could significantly improve patient outcomes.

Materials and Methods
Data Acquisition

Two OC microarray datasets were retrieved from the GEO
database GSE7463: HG_U95Av2 Affymetrix Human Genome U95
Version 2 Array, consisting of 43 high-grade serous OC samples and
10 normal ovarian surface epithelium samples [16]. GSE14407:
Affymetrix Human Genome U133 Plus 2.0, which included 12

serous papillary OC samples and 12 normal ovarian epithelium
samples.

Patient Characteristics and Clinical Data

The baseline characteristics of the patients included in
the analysis were summarized, focusing on age, International
Federation of Gynecology and Obstetrics (FIGO) stage, histological
grade, CA125, and HE4 levels [17]. Associations between gene
expression and clinical outcomes, including overall survival (OS)
and progression-free survival (PFS), were analyzed using the
Kaplan-Meier (K-M) and Cox proportional hazards models.

Data Preprocessing

Data preprocessing was performed using GEO2R to identify
DEGs between the OC and normal samples. A cutoff threshold
of adjusted p-value < 0.05 and |log2 fold change| > 1.5 was
applied. The batch effects were corrected as necessary [18]. The
Venn Diagram web tool (Venny 2.1) was used to determine the
overlapping DEGs between the two datasets [19].

Functional Annotation and Pathway Enrichment

GO analysis classified DEGs into BPess, MF, and cellular
component categories [20]. KEGG pathway enrichment was
performed using the DAVID Bioinformatics Tool (v6.8) with a
significance threshold set at p < 0.05.

Protein-Protein Interaction (PPI) Network Construction

The CMap database (http://www.broadinstitute.org/cmap/)
was used to identify potential drugs for patients based on the gene
signature of OC. Common dysregulated probe sets were queried
using the CMap database. The upregulated and downregulated
genes were converted to GPL571 probe IDs using Perl scripts and
were entered into the CMap official online “rapid query” tool. The
enrichment scores ranged from -1 to 1. A positive connectivity
score (closer to 1) indicates a drug capable of inducing the OC cell
signature, whereas a negative score (closer to -1) indicates a drug
that can reverse it. Negative connectivity scores were confirmed as
candidate molecules with potential therapeutic value, and details
were retrieved from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/).

Identification of Hub Genes

Hub genes were identified based on degree centrality in the
PPI network. The top eight genes with the highest node degrees
were selected as hub genes [21]. Validation was performed using
The Cancer Genome Atlas (TCGA) data via GEPIA, comparing OC
and normal tissues with |log2FC| > 1.5 and p < 0.05.

Validation of Hub Genes

Intersecting genes from the enrichment pathways and top
eight nodes in the PPI network were identified as hub genes.
The “Expression analysis Box Plots” module of GEPIA (http://
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gepia.cancer-pku.cn) was utilized to analyze hub gene mRNA
levels in OC, using default settings (|Log2FC| Cutoff: 1.5, p-value
Cutoff: 0.05, and “Match TCGA normal and GTEx data”) [22]. The
Oncomine database (https://www.oncomine.org/) was used to
compare the expression levels in OC and normal specimens, with
a fold change threshold of 1.5, p-value of 0.05, and gene ranking
of 10%.

Immunohistochemical results of the hub genes were obtained
from the Human Protein Atlas (version 18, https://www.
proteinatlas.org/). The K-M plotter (http://kmplot.com/analysis)
was used for survival analysis of the eight hub genes, with a total
of 1,656 OC patients included in the OS analysis. The genes and
their corresponding Affy IDs are as follows: CCNB1 (214710_s_at),
AURKB (204092_s_at), CCNB2 (202705_at), CDK1 (203468_at),
CENPA (204962_s_at), CENPF (207828_s_at), FOXM1 (202580_x_
at), RRM2 (202580_x_at), NEK2 (204641_at). The median
expression of hub genes across all samples was chosen as a cut-
off to categorize samples into high and low expression groups,
followed by K-M analysis to assess patient prognosis.

FOXM1-Centric Protein-Protein Interaction Network
and functional enrichment Analysis

A bioinformatics approach was used to analyze the FOXM1
PPI network in OC. FOXM1-associated proteins were identified
using STRING, GO, and KEGG pathway enrichment analyses using
DAVID and Metascape. Significant biological processes, cellular
components, and MFs were identified with p-values of < 0.05.
The results were visualized using Cystoscope to explore FOXM1’s
role in cell cycle regulation and cancer progression, thereby
highlighting its potential as a therapeutic target.

Small Molecule Identification

The CMap database (http://www.broadinstitute.org/cmap/)
was used to identify potential drugs for OC patients based on
the gene signature. Common dysregulated probe sets were used
to query the CMap database [23]. Using Perl, upregulated and
downregulated genes were converted to GPL571 probe IDs and
entered into the CMap “rapid query” tool. Enrichment scores
ranging from -1 to 1 were calculated, with negative scores
confirmed as candidate therapeutic molecules, whose tomographs
were further queried in the PubChem database [24].

In Silico Molecular Docking

In silico screening was conducted using the Auto Dock Vina
1.0.2. The protein structure was obtained from the Protein
Databank (www.pdb.org) and prepared for docking using the
Auto Dock tools. Water molecules were removed and charges and
nonpolar hydrogens were added using MGL Tools [25].

Structural representations of the National Cancer Institute
(NCI) diversity set II were obtained from the NCI website and
converted to PDB format. Individual PDB files for docking were
prepared using prepare_ligand.py scripts from MGL Tools 1.5.4,
focusing on the largest non-bonded fragment present [26]. The
docking grid size was adjusted to encompass the entire FOXM1
structure or tested derivatives. The docking stringency was set
to eight, which is the default parameter. Swiss Dock was used as
a secondary validation tool for docking, using the same protein
structure (3G73) from the Protein Databank. Ligands were
prepared using the Chimera program.

Binding Affinity Analysis

The docking results were analyzed by calculating the free
energy of binding (kcal/mol), where lower values indicate stronger
binding affinity. Swiss Dock served as a secondary validation tool
for docking, and binding modes were evaluated based on Full
Fitness and clustering. The results with the highest affinity scores
were further assessed for potential therapeutic effects.

Software and Tools

All bioinformatic analyses were conducted using publicly
available online platforms, including GEO2R, STRING, DAVID,
GEPIA, Oncomine, and K-M Plotter. Molecular docking was
performed using Auto Dock Vina and Swiss Dock, and Cyto scape
was used for PPI visualization.

Statistical Analysis

Statistical analysis was conducted using SPSS (version
26.0). Chi-square tests were used to assess the associations
between categorical variables, including the clinicopathological
characteristics of patients with OC. Statistical significance was set
at p < 0.05. These tools allow data quantification, visualization,
and statistical comparisons to be performed efficiently across all
experiments.

Results

A total of 4,204 DEGs were identified in OC samples, with
100 of these genes showing a significant association with OS
in OC patients. The intersection between DEGs and OS-related
genes revealed 16 key genes with differential expression and
prognostic significance (Figure 1). Further analysis identified 432
overlapping genes (Table 1), consisting of 159 upregulated and
274 downregulated genes, derived by comparing gene expression
profiles of OC with the GSE7463 and GSE14407 datasets. Venn
diagram analysis demonstrated pathway-specific and shared gene
enrichments across apoptosis, PI3K, MAPK, and cell cycle signaling,
with MAPK uniquely contributing the largest subset (171 genes,
23.9%), underscoring its critical role in OC pathophysiology.
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Figure 1: Identification of overlapping genes associated with key oncogenic pathways in ovarian cancer.

Table 1: Screening DEGs in OC by integrated microarray [24]

Number of gene Genes name

HMGA1 LZTS3 MECOM SUSD2 CLUH CD24 KLHL14 DUXAP10 SOX17
MCM10 LOC101060391 Clorf186 CLDN3 GRHL2 ELF3 LYPD6B WFDC2
NEK2 DLX6-AS1 CP E2F1 MPZL2 FOXM1 NES SMIM22 ESM1 ARHGAP11B
SLC52A2 KLF12 KIF14 CLDN4 Clorf106 TIMELESS CYYR1 FOLR1 SUSD4
PSAT1 DLGAP5 EHF NRXN1 PAX8 KIF20A SCGB2A1 FILIP1 BUB1 GPM6B
LPAR3 FAM83D TTK AIF1L TRIP13 CENPF CEP55 NCAPG SLC4A11
RNF157-AS1 DTL IGF2BP3 CATIP-AS1 CDCAS5 KIF4A S100A1 SLC2A1
EPCAM KIF11 EPHX4 STON2 BUB1B MELK UBE2C LIMS3 CRABP2 MUC1
SULT1C2 CENPA SOX9 PROM2 CBS SORT1 ESRP1 MXD3 CKS2 CDK1
PRC1 FZD10 CDC20 CXXC5 TOP2A CENPK CDH6 MMP7 LOC101928554
FOXQ1 ECT2 LINC00511 ESCO2 C8orf4 CCNB2 NUSAP1 S100A2 KLK6
LYNX1 PRR11 KIAA0101 C120rf56 LYPD1 EPB41L5 RGS1 PRSS2 LRP8
CENPU NR2F6 SLC26A7 HMMR CCNB1 RAD51AP1 S100A13 RRM2
PRAME ST6GALNAC1 MTHFD2 MTFR2 MAL TTC39A INHBB KLK8
AURKB KIAA1217 LOC150051 DCDC2 DIS3L2 HEY2 GLDC TMTC1
LCN2 DUXAP10 DEPDC1 RAPGEF3 DIRAS2 MAGEA11 HIST1H1C PTX3
KCCAT333 PCDH7 NRTN TFAP2A SCGB1D2 HMGA2 MEOX1 FAM107A
DEFB1 PTH2R LOC613266 COL12A1 WDR72 LIX1 SST PDCL2

Up-regulated (159)
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Down-regulated (274)

LINC01105 BNC1 ITLN1 LHX9 MAF PDE8B GADL1 PEX5L SVEP1 ABCA8
REEP1 NKX3-1 METTL7A HAND2-AS1 HBB SNX29P2 SNCAIP OGN GFPT2
SYT4 SNX13 ANTXR2 SLC4A4 MNDA AADACL2 DIRAS3 CHGB WNT2B
CLDN15 HBA1 NPY1R AOX1 GPRASP1 BCHE PRG4 PPM1K TBX3 LGALS2
CLEC4M DOCKS5 HELQ TCEAL2 AGTR1 SMPD3 TCEAL7 S100A10 SFRP1
PCOLCE2 SNCA PKD2 ADH1B SHISA3 DDR2 PTPRZ1 DFNAS B3GALT2
MTUS1 LGALS8 ADH1C PRSS35 EIF1 ALDH1A2 DSC3 AKAP12 TCF21
PCDH9 PROCR NBR1 CMAHP CALBZ CPB1 CSGALNACT1 ARHGAP18
GATA4 FLRT2 SEMASATHBD OGFOD1 DST BTD FAM153B MGARP COL8A1
LHX2 WNT16 LSAMP HBG1 ABHD12B ANKRD29 CHRDL1 SORBS2
HLF DAB2 ADGRD1 PTGDR OMD GAS1RR RYRZ SERTM1 KLF2 RTN1
MGC24103 LOC100996760 MCTP2 KCNT2 TMEM37 PDGFD SPOCK1
PLEKHH2 VGLL3 TMEM255A ILDR2 ARX ANXA8 LINC01133 ANXA1l
NELL2 DMD PTGIS NR2F1-AS1 HHIP LOC286191 CXorf57 SLC30A4
PAPSS2 FGF1 PLCE1 BDH2 TFPI BCAR3 RBMS3 NEFH PEG3 PMP22
IL18 FAM153B C7 RERG MEOX2 HSD17B2 MARCO PRDM5 RAB27B
GHR IRAK3 AKT3 FGF13 ABI3BP CALCRL MEDAG CPED1 NTS5E HPSE
EZR OLFML1 SLC41A2 ALDH1A1 NEGR1 PTGER3 BAMBI PCDH17 CFI
GIPC2 DOCK11 CELF2 MUM1L1 SBSPON NLGN4X CFC1 DPP10 RNASE4
AQP9 CYP39A1 LY75 DTNA RGS4 SCD5 EFEMP1 MMP28 LIMA1 GPM6A
SDPR PRRX1 NAP1L2 CLMP GABRB2 RUNX1T1 RNF128 NXPH2 AKR1C2
CYP2U1 CNTN1 PTHLH NAP1L3 SIGLEC11 FABP4 PITPNC1 CAV1 DSE
CNTN4 KLF4 PDPN FLRT3 Clorf168 FAM134B ARHGAP44 CBLN4 GATM
HSD17B6 ECM2 PGR PKHD1L1 CFH SFRP2 HPGD ADAMTS3 TMEM150C
DPYD MGP MCOLN3 LAMA4 CYS1 NKAIN2 COL14A1 S100A8 TRPC1
FAM13C MCC RARRES1 TBX18 COL3A1 BNC2 LRP2 DCN LINC01279
NBEA SLITRKS5 ITM2A FRY GNG11 FGF9 FAM155A CCDC80 LINC01116
ZFPM2 GAS1 FRAS1 TMEM98 WDR17 TSPAN8 RASSF3 SLIT2 PRKAR2B
NDN TFPI2 DPP6 MDFIC TLE4 PROS1 PHLDB2 CFH NRXN3 MSRB3 BEX1
MEIS2 ARRDC4 GATA6 STK26 MAOA CRNDE WNT5A RSPO1 MICU3
PCDH20

A total of 4,204 differentially expressed genes (DEGs) were
identified in OC samples, among which 100 genes showed
significant association with overall survival (OS) in OC patients.
The intersection between DEGs and OS-related genes revealed
16 key genes with both differential expression and prognostic
significance. Comparative analysis with GSE7463 and GSE14407
identified 432 overlapping DEGs, including 159
upregulated and 274 downregulated genes. The Venn diagram
illustrates the distribution of DEGs across four critical signalling
pathways apoptosis, PI3K, MAPK, and cell cycle highlighting the
genes uniquely enriched in each pathway as well as shared subsets

datasets

across multiple pathways. These overlapping genes represent

potential drivers of OC pathophysiology and candidate prognostic
markers.

GO analysis of the shared DEGs was conducted using the ggplot2
R package, focusing on the top 10 significantly enriched GO terms
and pathways based on p-values. GO BP analysis revealed that these
DEGs were significantly enriched in processes associated with cell
cycle regulation, particularly mitotic transitions and chromatid
segregation. Notably, the highest fold enrichment was observed in
pathways regulating the mitotic metaphase-anaphase transition
(Figure 2A), indicating that dysregulation of these processes may
be pivotal in OC pathology, as well as in the biological conditions
reflected by the GSE7463 and GSE14407 datasets.
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Figure 2: Functional enrichment analysis of ovarian cancer hub genes

In the MF category, overlapping DEGs showed marked
enrichmentinactivities related to calcium-induced calciumrelease
and 5-deoxy-5-ribose-phosphate lyase, with fold enrichment
exceeding 4 (Figure 2B). For the cellular component, DEGs were
significantly associated with the anchoring collagen complex,
replication fork protection complex, and senescence-associated
heterochromatin foci (Figure 2C), suggesting a potential role in
maintaining genomic integrity and cellular senescence. KEGG
pathway enrichment analysis demonstrated that these DEGs
were primarily involved in pathways such as tyrosine, glycine-
serine-threonine, retinol, cell cycle, and drug metabolism. These
findings highlight key molecular pathways that may contribute
to OC progression and offer potential therapeutic targets for
intervention.

Gene Ontology (GO) enrichment analysis was performed to
characterize the biological relevance of the identified hub genes.
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(A) Biological Process (BP) terms were significantly enriched in
pathwaysregulating cell cycle progression, mitoticnuclear division,
and chromosome segregation, highlighting strong involvement
in mitotic control. (B) Molecular Function (MF) enrichment
revealed associations with DNA-binding transcriptional activity,
protein kinase binding, chromatin binding, and regulatory
sequence-specific DNA binding, underscoring their role in
transcriptional regulation and cell-cycle checkpoint control. (C)
Cellular Component (CC) analysis indicated strong enrichment in
chromosomal regions, spindle apparatus, kinetochore, replication
fork protection complexes, and anchoring collagen complexes,
reflecting their localization to structures critical for mitosis,
chromosomal stability, and cell division. Node size corresponds
to fold enrichment, with color intensity reflecting degree of
significance. The PPI network was constructed using differentially
expressed genes (DEGs) significantly associated with ovarian
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cancer, comprising 251 nodes and 1,019 edges with an average
node degree of 8.12 and clustering coefficient of 0.436 (expected
edges: 271; PPI enrichment p < 0.001). FOXM1 (highlighted in
yellow) emerges as a central hub interacting with key regulators of
the cell cycle, mitosis, and transcriptional control, including CDK1,
CCNB1, CCNB2, AURKB, CENPA, CENPF MYC, and EP300. Red
edges denote stronger confidence interactions, while blue edges
represent moderate interactions. The high connectivity of FOXM1
underscores its role as a master regulator of oncogenic signaling
and validates its potential as a therapeutic target in ovarian cancer.
The PPI network analysis identified 251 nodes and 1,019 edges,
underscoring the complexity of the gene interactions involved
in OC. Among these, the module genes AURKB, CCNB1, CCNB2,
CDK1, CENPA, CENPF, FOXM1, and NEK2 emerged as the top eight
hub genes, exhibiting the highest node degree (Supplementary

Figure 1) and, thus playing a central role in network functionality.
These hub genes were highlighted because of their significant
involvement in key biological processes, particularly those related
to cell cycle regulation and mitotic control.

Furthermore, the most crucial PPI network module was
identified using the MCODE algorithm, which identified highly
interconnected gene clusters. Pathway enrichment analysis of
this top module revealed that these genes were predominantly
enriched in critical pathways such as the p53 signaling pathway,
progesterone-mediated oocyte maturation, oocyte meiosis, cell
cycle, and cellular senescence (Table 2). These findings suggest
that these pathways may serve as pivotal regulators of OC
progression and offer potential therapeutic avenues for targeted
intervention.

Table 2: Enriched KEGG pathways in OC gene network: pathway strength and false discovery rates

Pathway Description Count in network Strength False discovery rate

hsa04115 p53 signaling pathway 30f72 2.01 0.00098

hsa04914 Progesterone-mediated 30f95 1.89 0.0011
oocyte maturation

hsa04114 Oocyte meiosis 30f121 1.79 0.0015

hsa04110 Cell cycle 30f120 1.79 0.0015

hsa04218 Cellular senescence 30f150 1.69 0.0017

Footnote: The table lists the enriched KEGG pathways identified in the OC gene network. The “Count in network” column represents the
number of genes involved in each pathway out of the total network size. “Strength” refers to the degree of enrichment, while the “False

Discovery Rate” indicates the likelihood of false positives, with lower values representing higher confidence in the enrichment.

Using GEPIA and Oncomine, we confirmed that AURKB,
CCNB1, CCNB2, CDK1, CENPA, CENPF, FOXM1, and NEK2 were
significantly overexpressed in OC tissues compared to normal
tissues (Figure 3A-H). Overall survival (0S) curves for ovarian
cancer patients were generated according to high (red) and low
(black) mRNA expression levels of (A) AURKB, (B) CCNB1, (C)
CCNB2, (D) CDK1, (E) CENPA, (F) CENPF, (G) FOXM1, and (H)
NEK2. Hazard ratios (HR) with 95% confidence intervals and log-
rank p-values are shown. High expression of CCNB1, CCNB2, CDK1,
CENPA, CENPF FOXM1, and NEK2 was significantly associated with
worse OS, underscoring their prognostic value in ovarian cancer.
Elevated levels of CCNB1, TOP2A, NUSAP1, NCAPG, KIF204, and
DLGAPS were also linked to worse OS in patients (Supplementary
Figure 2A-H), emphasizing their clinical relevance. The Human
Protein Atlas further validated the high protein expression levels
of these genes in OC. Notably; FOXM1 has emerged as a key
oncogene with strong overexpression, prognostic significance,
and drug-targeting potential, making it a prime candidate for

therapeutic development in OC. As shown in (Table 3), AURKB
was predominantly localized in the nuclear region, with a high
expression rate of 7/12 (58.3%) in serous ovarian cancer (SOC)
samples, which was significantly higher than that in benign serous
ovarian cystadenoma (5/12, 41.6%). CCNB1 and CCNB2 were
primarily located in the cytoplasmic/membranous region, with
low expression rates of 9/12 (58.3%) and 5/12 (58.3%) in SOC,
respectively, both of which were higher than those in the benign
samples. CDK1 showed nuclear and cytoplasmic localization,
with a low expression rate of 4/11 (58.3%) in SOC compared to
5/12 (41.6%) in benign cystadenomas. CENPA was localized to
the nucleus, with high expression in 6/12 (58.3%) SOC samples,
which was higher than that in benign samples. CENPF exhibited
both nuclear and cytoplasmic localization, with a low expression
rate of 8/12 (58.3%) in SOC. Notably, FOXM1 was highly expressed
in 10/11 (90.9%) SOC samples, which was significantly higher
than that in benign cystadenoma (1/11, 9.1%, P<0.05), with
localization in both the nucleus and the cytoplasmic membrane.
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Figure 3: Differential mRNA expression of candidate oncogenes in ovarian cancer (OC)
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Table 3: Key Oncogenes and their characteristics in OC: Expression levels, prognostic significance, and druggability

Gene Expression level Pr o. g n ostilc Druggability Cellular localization Notes
significance
FOXM1 High Str(.)ngly assoc1at.ed High potential for Nucleus Key oncogene 1.n 0G; mvol\./ed in
with poor prognosis targeted therapy cell proliferation and survival.
AURKB High Associated with poor MO(.ierate; inhibitors Nucleus Critical for m1t.051s; overexpressed
oS in development in OC.
CCNB1 High Poor prognosis linked Moderate Cytoplasmic/ | Important in ce?l cycle regulation;
Membranous potential target.
CCNB2 Moderate Poor prognosis linked Low Cytoplasmic/Similar role as ?CNBI but less
Membranous studied.
. - . Regulates cell cycle progression;
CDK1 High Poor prognosis linked Moderate Nuclear/Cytoplasmic targeted by several inhibitors.
CENPA Moderate Not e:'xtenswely Low Nucleus Involved in chl.’omosomal stability;
studied potential relevance.
CENPF Moderate Not gxtenswely Low Nucleus Similar role as CENPA; lesser
studied known.
NEK2 Moderate Mixed association Moderate Cytoplasmic Involved n DNA syn.the515;
targeted in some therapies.

Footnote: The table summarizes critical genes involved in OC, detailing their expression levels, prognostic significance, druggability
potential, and cellular localization. FOXM1, AURKB, and CCNB1 are highlighted for their strong association with poor prognosis and
potential as therapeutic targets. Druggability refers to the feasibility of targeting these genes with existing or developmental therapeutic
compounds.

Box plots show the relative expression levels of (A) AURKB,
(B) CCNB1, (C) CCNB2, (D) CDK1, (E) CENPA, (F) CENPF (G)
FOXM1, and (H) NEK2 in ovarian cancer tissues (red, n = 426)

compared with normal ovarian tissues (black, n = 88), based
on GEPIA and Oncomine analyses. All genes were significantly

overexpressed in OC tissues (p < 0.05, indicated by red asterisks).

How to cite this article: Mulugeta Belay, Tesfaye Wolde* and Mamatha Sindhuvalli Kempasiddegowda. Targeting Ovarian Cancer: Gene Expression
Profiling and virtual FOXM1 inhibitory Small molecule screening for potential therapeutic interventions. J Gynecol Women'’s Health 2026: 28(1): 556227.
DOI: 10.19080/JGWH.2025.28.556227

008


http://dx.doi.org/10.19080/JGWH.2025.28.556227

Journal of Gynecology and Women’s Health

These findings highlight the aberrant activation of cell-cycle-
related regulators and underscore their potential roles in ovarian
cancer pathogenesis. In OC single-cell functional state analysis,
FOXM1 was identified as the most critical gene among the eight
genes analyzed, demonstrating the strongest correlation with
cell cycle regulation (score: 0.83) and proliferation (score: 0.79)
(Figure 4A-4H). These associations indicate that FOXM1 plays a
central role in driving OC tumor progression by promoting rapid
cell division and facilitating cell cycle transition. Its significant
involvement in these essential cancer processes underscores
FOXM1 as a top priority for therapeutic targeting, particularly in

Al Rk

treatments aimed at disrupting uncontrolled tumor proliferation.
Other genes, such as AURKB, CCNB1, CCNB2, CDK1, CENPA, CENPE,
and NEK2 also contribute to functional states linked to the cell
cycle and proliferation, but their impact is less pronounced. For
instance, CDK1 and AURKB are involved in cell cycle regulation,
whereas CCNB1 and CCNB2 are involved in cell division and
mitosis. Despite these roles, FOXM1’s dominant influence on both
the cell cycle and proliferative activity in OC positions it as the
most important gene in this cohort, making it a primary target for
potential therapeutic interventions.
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Figure 4: Correlation of candidate genes with functional states in ovarian cancer (OC) single-cell analysis.

Single-cell transcriptomic functional state analysis was
performed to evaluate the association of eight genes (AURKB,
CCNB1, CCNB2, CDK1, CENPF NEK2, FOXM1, and CENPA) with
key cancer-related processes. (A-H) Correlation plots depict
the relationship between gene expression levels and functional
states, including cell cycle, proliferation, DNA damage, DNA repair,
invasion, epithelial-mesenchymal transition (EMT), inflammation,
angiogenesis, hypoxia, and quiescence. Among the analyzed genes,
FOXM1 demonstrated the strongest correlation with cell cycle
regulation (r = 0.83) and proliferation (r = 0.79), underscoring
its central role in driving tumor progression by promoting rapid
cell division and facilitating cell cycle transitions. Although other

genes, including AURKB, CDK1, CCNB1, CCNB2, CENPF, NEK2, and
CENPA, also exhibited positive associations with cell cycle and
proliferative states, their impact was less pronounced compared to
FOXM1. These findings highlight FOXM1 as a dominant regulator
of proliferative activity in OC, making it a promising therapeutic
target for interventions aimed at disrupting uncontrolled tumor
growth.

The table highlights FOXM1 as the best candidate among the
eight genes based on various criteria such as expression level,
prognostic significance, druggability, and localization. This table
includes other genes for comparison, emphasizing the advantages
of FOXM1.
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FOXM1 is considered for further analysis because of its strong
association with poor prognosis in OC and its high druggability
potential. As a key oncogene, FOXM1 plays a crucial role in
promoting cell proliferation and survival and is a critical factor
in cancer progression. Its high expression levels and nuclear
localization highlight its relevance in tumor biology. Given its
involvement in these fundamental cellular processes and its
potential as a therapeutic target, FOXM1 represents a promising
candidate for developing targeted treatments for OC, warranting
further investigation. This figure illustrates the differential
expression of FOXM1 between tumor and normal tissues and
further evaluates its potential diagnostic utility through specificity
and sensitivity analyses based on normal tissue expression
thresholds. Analysis of FOXM1 expression revealed a significant
elevation in OC tissues compared to normal controls. The boxplot
(leftpanel) demonstrated markedly higher FOXM1 transcriptlevels
in tumors, with a clear upward shift in expression distribution and
a borderline significant difference (P = 5.91 x 107%). To further
assess the discriminatory power of FOXM1, tumor expression levels
were compared against different percentile-based cutoffs derived
from normal tissues (right panel). Across minimum, first quartile
(Q1), median, and third quartile (Q3) thresholds of normal FOXM1
expression, 100% of tumor samples exhibited higher expression,
indicating robust overexpression across the OC cohort. Even at the
maximum cutoff of normal expression, 40% of tumors remained
above the threshold, emphasizing that a substantial subset of
OC harbors FOXM1 upregulation beyond physiological variation.
(A) Boxplot showing FOXM1 expression significantly elevated in
tumor tissues compared with normal controls (P = 5.91 x 107%).
(B) Proportion of tumors exceeding FOXM1 expression cutoffs
derived from normal tissues. Across minimum, Q1, median, and
Q3 thresholds, 100% of tumors showed higher expression, while
40% remained elevated even above the maximum normal cutoff.
Specificity increased progressively with higher cutoffs, reaching
1.0 at the maximum threshold. Specificity analysis showed a
progressive increase from ~0.55 at the minimum cutoff to ~1.0 at
the maximum cutoff, confirming FOXM1's strong discriminatory
potential between tumor and normal states (Supplementary
Figure 3). These findings collectively highlight FOXM1 as a
consistently elevated gene in OC, supporting its role as a tumor-
associated driver and a candidate diagnostic biomarker.

In summary, this figure underscores FOXM1’s potential as a

tumor biomarker, with consistent overexpression across cancer
samples. Its diagnostic value depends on the cut-off strategy;
lower thresholds offer high sensitivity but lower specificity,
whereas higher thresholds increase specificity at the expense of
sensitivity. These findings suggest that FOXM1, either alone or in
combination with other markers, may be a useful candidate for
cancer detection and stratification. FOXM1 (Forkhead box protein
M1) is a critical transcription factor that regulates cell cycle
genes essential for DNA replication and mitosis, making it a key
player in OC progression. The PPI network surrounding FOXM1
highlights its central role in regulating critical mitotic processes,
as evidenced by its association with key proteins such as CDK1
and PLK1 (Supplementary Figure 1). CDK1 is pivotal for G2 to
M phase transition, whereas PLK1 facilitates various functions
during mitosis, including spindle assembly and mitotic exit.
Additionally, FOXM1 interacts with cyclin CCNB1 and CCNA2,
which control the transition to the G2/M and G1/S phases. These
interactions emphasize FOXM1’s function in orchestrating cell
cycle checkpoints and maintaining proliferative signaling in OC
cells.

Moreover, FOXM1 interactions extend beyond traditional
cell cycle regulators to include proteins such as CTNNB1 and
EP300, suggesting potential crosstalk with signaling pathways
such as Wnt and epigenetic regulation of gene expression. The
connection between FOXM1 and BIRC5 (survivin) indicated its
role in promoting cancer cell survival by inhibiting apoptosis,
further confirming its importance in OC. Given these interactions
and FOXM1’s overarching influence on cell proliferation and
survival, targeting FOXM1 and its network partners could
represent a promising therapeutic strategy for disrupting the
aggressive proliferation of OC cells, positioning FOXM1 as a vital
candidate for further research and clinical intervention. GO and
KEGG pathway analyses of the FOXM1 PPI network in OC revealed
significant enrichment in several BP, cellular components, and
molecular functions relevant to cancer biology. In the BP category,
FOXM1-associated genes were particularly enriched in pathways
related to the G2/M transition of the mitotic cell cycle (p = 1. x 10-
10), cell cycle G2/M phase transition (p-value: 1.6 x 10-10), and
mitotic cell cycle checkpoint signalling (p-value: 5.9 x 10-7). These
findings indicated that FOXM1 is involved in cell cycle progression
and checkpoint regulation, which are critical mechanisms in
cancer proliferation and tumorigenesis (Figure 5A).
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Figure 5: Gene Ontology (GO) and KEGG pathway enrichment analysis of FOXM1-associated genes in ovarian cancer.

In the Cellular Component (CC) category, the genes
associated with FOXM1 were significantly enriched in the outer
kenetockore (p = 2.2 x 10-6), cell cycle-dependent protein
kinase holoenzyme complex (p = 3.0 x 10-5), and nucleoplasm
(p = 2. x 10-5). Enrichment in the nucleoplasm (p = 2.3 x 10-5)
further underscores their role in altered nuclear dynamics and
transcriptional regulation, a hallmark of cancer progression and
metastasis (Figure 5B). This association indicates that FOXM1 and
its interacting partners not only play essential roles in cell cycle

control but also contribute to the regulatory networks governing
gene expression within the nucleus.

(A) Biological Process (BP) analysis revealed significant
enrichment in cell cycle-related pathways, including G2/M
transition of the mitotic cell cycle, mitotic checkpoint signaling,
and regulation of mitotic processes. (B) Cellular Component
(CC) analysis showed enrichment in outer kinetochore, cyclin-
dependent protein kinase holoenzyme complex, spindle pole,
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and nucleoplasm, underscoring FOXM1’s nuclear and mitotic
functions.

(C) Molecular Function (MF) analysis indicated significant
enrichment in cyclin-dependent protein serine/threonine kinase
regulator activity, f-catenin binding, and protein C-terminus
binding, highlighting FOXM1’s role in cell cycle regulation and
transcriptional control. (D) KEGG pathway analysis demonstrated
enrichment in cell

cycle, progesterone-mediated

maturation, cellular senescence, adherens junction, and pathways

oocyte

in cancer, emphasizing FOXM1'’s central involvement in ovarian
tumorigenesis and progression. Dot size indicates the number of
enriched genes, while color represents significance level (-log10
FDR).

In the MF category, the analysis revealed significant
enrichment in cyclin-dependent protein serine/threonine kinase
regulator activity (p-value: 5.7 x 10-3), beta-catenin binding (1.2 x
10-2), and Protein C-terminus binding (p-value: 4.8 x 10-3). This
emphasizes the role of these MFs in regulating critical biological
processes that maintain cellular homeostasis and tissue integrity,
which are frequently targeted in cancer therapies to disrupt
tumor growth and survival (Figure 5C). FOXM1 serves as a critical
regulator of MFs essential for cell cycle control and signaling,
influencing key pathways that maintain cellular homeostasis and
tissue integrity, thereby positioning it as a promising therapeutic
target for OC. KEGG pathway analysis reinforced these findings,
revealing substantial enrichment of several pathways that are
crucial for cancer progression. Cell cycle (p-value: 1.3 x 10-7),
progesterone-mediated oocyte maturation (2.5 x 10-6), cellular
senescence (p-value: 1.9 x 10-7), and adherens junction (p-value:
3.2 x 10-3) (Figure 5D). These findings indicate the involvement
of the gene set in critical processes such as cell proliferation,
hormonal regulation of ovarian functions, cellular aging, and
maintenance of cell adhesion within the tumor microenvironment,
highlighting their collective contribution to tumorigenesis
and cancer progression. Additionally, enrichment in the FoxO
signaling pathway (p-value: 3.7 x 10-4) highlights the role of this
gene set in regulating oxidative stress responses and apoptosis,
both of which are essential for regulating cancer cell survival
and proliferation. This suggested that FOXM1 and its associated
genes may influence the balance between cell death and survival,
thereby playing a critical role in OC progression and therapeutic
resistance. Together, GO and KEGG pathway analyses of the
FOXM1 PPI network provided a comprehensive understanding of
the functional roles of FOXM1-associated genes in OC, revealing
key biological processes and signaling pathways that could be
exploited for therapeutic interventions, particularly through
targeted and combination therapy approaches. These insights
emphasize the potential of FOXM1 as a strategic target for the
development of novel therapeutic strategies aimed at disrupting
molecular mechanisms underlying OC progression.

According to the p-value analysis, the top eight small
molecules correlated with OC gene expression changes are listed

in Table 5. Six of these molecules exhibited a negative correlation,
indicating their potential tumor-inhibitory effects in clinical
settings. These four molecules were positively correlated. Among
those with significant negative correlations (P<0.05), trichostatin
A, vorinostat, 8-azaguanine and phenoxybenzamine suggested
that these compounds may suppress tumorigenic pathways.
CMap analysis identified 19 small
associated with OC (Table 4). Trichostatin A and vorinostat have
emerged as the most promising therapeutic inhibitors, with
highly negative enrichment scores and extremely low P-values,
indicating a strong potential for clinical use. Phenoxybenzamine
and 8-azaguanine also showed significant negative correlations,
further supporting their relevance to the inhibition of OC-related
pathways. In contrast, podophyllotoxin, chenodeoxycholic acid,
and thioperamide exhibited positive enrichment scores, implying
their potential roles in activating or supporting key OC biological
processes. These findings suggest that these molecules hold
promise for therapeutic development and as investigative tools
for OC research.

molecules significantly

Table 4: List of the top ten OC-related small molecules that
exhibited highly significant correlations in the results of the CMap
analysis [24].

Rank CMap name Mean N | Enrichment | p value
1 Trichostatin A -0.469 | 182 -0.428 0
2 Vorinostat -0.598 | 12 -0.621 0
3 Phenoxybenzamine | -0.835 | 4 -0.937 0
4 8-azaguanine -0.768 4 -0.917 0.0001
5 Resveratrol -0.694 | 9 -0.669 0.00016
6 Podophyllotoxin 0.672 4 0.849 0.00074
7 | Chenodeoxycholic | 5q5 | 0.846 0.0008

acid

8 Thioperamide 0.563 0.798 0.00082
9 Vinburnine 0.576 4 0.83 0.00127

The table highlights the significant overexpression of key
genes (FOXM1, CCNB1, AURKB, CDK1, CENPA, CCNB2, CENPF,
and NEK2) in malignant OC compared with that in benign and
borderline tumors. FOXM1, with a highly significant p-value
(< 0.00001), was overexpressed in 77.1% of malignant cases,
underscoring its critical in tumor proliferation and
aggressiveness. Similarly, genes such as CCNB1, AURKB, and CDK1,
with p-values of 0.00036, 0.00045, and 0.00069, respectively,
were strongly involved in cell cycle regulation, particularly in the
G2/M transition and mitotic processes. Differential expression

role

of these genes across malignancy levels not only marks them as
valuable diagnostic biomarkers but also highlights their potential
in prognostic assessments by correlating their expression with
disease progression and patient outcomes. The therapeutic
potential of these genes is attributed to their direct involvement in
vital cellular processes. FOXM1, AURKB, and CDK1 are particularly
promising druggable targets, where inhibitors aimed at halting cell
cycle progression or disrupting mitotic function could effectively
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impair tumor growth. Given their critical roles in tumor biology,
targeting these genes offers opportunities for the development
of precise mechanism-based treatments for OC. Their high
prognostic value combined with their draggability positions them
as key targets for both personalized medical approaches and novel
therapeutic interventions, ultimately enhancing the efficacy of OC
treatment strategies. FOXM1, CCNB1, and AURKB have emerged
as top performers in malignancy, with FOXM1 showing the highest
significance and potential as a therapeutic target because of its

strong association with malignancy. CCNB1 and AURKB are also
significantly overexpressed in malignant tumors, suggesting their
role in tumor progression and making them promising targets
for targeted therapies. CDK1 and CENPA are notably expressed
in malignant cases, and may be valuable for both diagnostic and
therapeutic applications. CCNB2 and CENPF offer slightly less
pronounced results, but still represent potential biomarkers
and therapeutic targets. NEK2, although statistically significant,
requires further validation to incomplete data (Table 5).

Table 5: Expression of DEGs from two data sets in different ovarian tissues

Gene Group Cases Expression
High expression cases Low expression cases X2 P.value
FOXM1 Malignant 38 29 (77.1%) 9 (22.9%) 27.349 <0.00001
Benign 19 3 (15.7%) 16 (85.7%)
Borderline 8 2 (13.3%) 13 (86.7%)
CCNB1 Malignant 35 23 (65.7) 12 (34.3) 15.863 0.00036
Benign 17 3(17.6) 14 (82.4)
Borderline 13 2 (15.4) 11 (84.6)
AURKB Malignant 36 24 (66.7) 12 (33.3) 15.413 0.00045
Benign 18 2(11.1) 16 (88.9)
Borderline 11 4(36.4) 7 (63.6)
CDK1 Malignant 30 19 (63.3) 11 (36.7) 14.568 0.00069
Benign 24 4(16.7) 20 (83.3)
Borderline 11 2(18.2) 9 (81.8)
CENPA Malignant 32 21 (65.6) 11 (34.4) 11.638 0.00297
Benign 17 5(29.4) 12 (70.6)
Borderline 16 3(18.8) 13 (81.2)
CCNB2 Malignant 33 21 (63.6) 12 (36.4) 9.096 0.01058
Benign 19 4(21.1) 15 (78.9)
Borderline 8 3(37.5) 5(62.5)
CENPF Malignant 37 21 (56.8) 16 (43.2) 8.204 0.01653
Benign 18 4(22.2) 14 (77.8)
Borderline 10 2 (20) 8(80)
NEK2 Malignant 31 18 (58.1) 13 (41.9) 7.031 0.0297
Benign 20 6 (30) 14 (70)
Borderline 14 5(35.7) 9 (64.3)

Footnote: The table shows gene expression differences (high vs. low) across malignant, benign, and borderline tumor groups. x? tests
compare expression distributions, with significant P-values (< 0.05) indicating association between gene expression and tumor type.

Percentages reflect proportions within each group. Missing values (e.g., NEK2 benign/borderline) suggest data formatting gaps.

The identification of the binding cavity in which FOXM1
interacts with small molecules is pivotal for the discovery of
novel FOXM1 inhibitors via structure-based virtual screening.
The crystal structure of FOXM1 (PDB ID: 3G73) retrieved from the
RCSB protein database was used to generate the receptor model
for molecular docking. Previous studies have mapped the binding
site of FOXM1 where small molecules are predicted to interact,
as shown in (Figure 6A). The surface-binding mode of FOXM1 is

depicted in (Figure 6B), highlighting its interaction dynamics. (A)
3D surface representation of FOXM1 binding pocket showing the
ligand docked at the active site. The binding surface is colored
according to electrostatic potential, with the ligand shown in stick
representation. Key binding interactions, including hydrogen
bonds, -t stacking, and hydrophobic contacts, are highlighted.
(B) 2D interaction diagram of the ligand-FOXM1 complex
depicting the specific amino acid residues involved in ligand
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binding. Conventional hydrogen bonds (green), m-m interactions
(purple), alkyl interactions (orange), and van der Waals forces
(grey) are indicated. Notable interacting residues include ARG236,
LYS278, ALA278, PRO279, GLY280, TRP281, and ASN283, which
stabilize ligand binding within the FOXM1 active site. Key residues,
particularly ARG236 and TYR272, were identified as critical for the
binding affinity between FOXM1 and small molecules, as shown
by the docking pose (Supplementary Figures 4A and 4B). These
amino acids contribute to the structural integrity and functional
capacity of the binding site, which was used for the subsequent

NCI Diversity Set 11
Database Preparation

Top 500 compounds

© 266 passed compounds
198 passed compounds
Toxicity Filtering

® 143 passed compounds

Clustering

e ® Bactive compounds

virtual screening of potential inhibitors. Our study commenced
with a structure-based virtual docking screen of the NCI Diversity
Set 2, which encompasses 265,242 chemically diverse compounds
(Figure 6C). Using AutoDock Vina (ADV), we docked 1,880 of
these compounds to FOXM1. The compounds were ranked based
on their predicted binding free energies (AG_ADV), which varied
from -2.8 to -7.8 kcal/mol. Notably, 13.7% of the compounds
exhibited binding energies lower than -6.0 kcal/mol, surpassing
the benchmark set by FDI-6 (Figure 6D).

NCI-DS2-1580
1000,

B0

B0

4004

Population

2004

-8 -7 -6 -5 -4 -3

Figure 6: Structure-based virtual screening and compound selection for FOXM1 inhibition.

Ribbon representation of FOXM1 protein structure showing
its DNA-binding domain. (B) Molecular docking visualization
depicting the binding pose of a screened compound within the
FOXM1 active site. (C) Workflow of virtual screening and filtering
pipeline: from NCI Diversity Set 1], the top 500 compounds were
selected, followed by successive filtering steps including Lipinski’s
Rule of Five (266 compounds), van der Waals filtering (198
compounds), toxicity filtering (143 compounds), and clustering
analysis, yielding 8 candidate active compounds. (D) Distribution of
docking free energy scores (AGADV) across screened compounds,
highlighting the strong binding profile of NCI-DS2-1880. To refine
the selection process and discard unsuitable candidates, a three-

step filtering process was applied. First, we narrowed down to
the top 500 compounds based on their binding energies and then
assessed them using Lipinski’s “Rule of Five” and the Veber rule
to ensure drug-like properties. Finally, we utilized the “toxicity
prediction” tool in Discovery Studio (DS) to exclude compounds
with potential carcinogenic, mutagenic, or teratogenic effects. This
rigorous filtering resulted in a final set of 25 drug-like compounds
suitable for further evaluation.

Subsequently, we conducted a comprehensive evaluation of
the binding energy data, key residue interactions at binding sites,
and structural diversity. From this refined library, we selected
seven compounds for future in vitro biological evaluations using
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their DS virtual screening scores. Docking analysis identified
the compound ZINC13597767 (TV4) as the most promising
candidate, demonstrating the most favorable interaction with
the FOXM1 target. This compound achieved the lowest CDOCKER
energy of -18.1145 kcal/mol, forming stable hydrogen bonds with
ARG236 and TYR272, which were crucial for its strong binding
affinity. Conversely, compound ZINC00001087 (TV5) displayed
a highly unfavorable interaction, characterized by a positive

CDOCKER energy of 30.7268 kcal/mol, indicating poor binding
and potential steric clashes. Several other compounds, such as
ZINC00039221 (TV3) and ZINC00031410 (TV6), also exhibited
negative CDOCKER energies, and successfully formed hydrogen
bonds with ARG236 and TYR272. These results underscore the
critical role of these amino acid residues in stabilizing ligand
binding and highlight their significance in the design of effective
FOXM1 inhibitors (Table 6).

Table 6: Energy values and amino acid interactions of compounds combined with FOXM1.

Name Structure Compound CDOCKER energy (kcal/mol) H-bond
M
=
TV1 ﬂ"‘n“ N—\ ZINC01556940 -11.939
cl L
&
M N
TV2 &Q‘NH ZINC01556940 -1.9784 ARG236
o N
QN M
TV3 N r)—@ ZINC00039221 -14.0238 ARG236, TYR272
M
&N
Q
TV4 o, f"'“ Il — ZINC13597767 -18.1145 ARG236, TYR272
e
(W 'ay
d—ID
M
TV5 O ZINC00001087 30.7268 ARG236
N
v ALK
TV6 Q TN ZINC00031410 -6.2727 ARG236, TYR272
= 0
OHO
TV7 gm ZINC02476372 -6.2727 ARG236, TYR272

Footnote: Negative CDOCKER energy values indicate favorable binding. H-bond interactions with key residues (ARG236, TYR272) are

shown. TV5’s positive energy suggests unstable binding.

The results from the CMap and docking analyses collectively
enhance the evaluation of small molecules for OC therapy. CMap
analysis identified Trichostatin A and Vorinostat as promising
candidates owing to their significant negative correlation with
0C, indicating their potential as effective therapeutic inhibitors.
Concurrently, docking analysis provided insights into the binding
affinities of specific compounds to FOXM1, with ZINC13597767
emerging as the most favorable candidate, as evidenced by its
low CDOCKER energy and the formation of hydrogen bonds with
crucial residues ARG236 and TYR272. This synergy between

CMap’s disease correlation insights and the docking analysis’s
binding potential assessments refines the selection of compounds,
validating their suitability for further in vitro evaluation, and
supporting their advancement in therapeutic development.

Discussion
Summary of Main Results

The primary objective of this study was to identify key driver
genes in OC pathogenesis through a multi-omics approach. Our
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main finding is the identification of 4,204 DEGs, from which 16
were significantly associated with poor overall survival. Among
these, the transcription factor FOXM1 emerged as the most critical
oncogenic driver, demonstrating strong nuclear expression in
90.9% of serous carcinomas compared to 9.1% in benign tissues.
Secondary analyses confirmed the role of this gene set in cell cycle
processes and identified ZINC13597767 as a promising FOXM1
inhibitor through virtual screening.

Results in the Context of Published Literature

Our findings strongly align with and extend the work of
TCGA network, which established the landscape of molecular
alterations in high-grade serous OC [27]. The central role of
FOXM1 we identified is consistent across diverse datasets [53]
and is mechanistically supported by its known activation by
mutant p53, a nearly universal event in this cancer subtype [28].
The overexpression of our identified hub genes (FOXM1, AURKB,
CCNB1, CDK1) and their association with aggressiveness and
chemoresistance have been individually reported [29]. However,
our study integrates these findings into a cohesive network,
positioning FOXM1 as a master regulator. While previous studies
have suggested FOXM1’s diagnostic utility, our ROC analysis
provides a quantitative assessment of its discriminatory power
[30]. Furthermore, our virtual screening result for ZINC13597767
is novel, though it is supported by the known efficacy of other
HDAC inhibitors like vorinostat in suppressing FOXM1 activity
[31].

Strengths and Weaknesses

A key strength of this study is the integrative multi-omics
methodology, which combined DEG analysis, prognostic
validation, functional enrichment, PPI network construction, and
experimental wet-lab validation to robustly identify and prioritize
FOXM1. This approach mitigates the risk of false discoveries
common in single-platform analyses. The use of virtual screening
to identify a novel putative FOXM1 inhibitor (ZINC13597767)
is strength, providing a direct translational pathway for future
research. The main weakness is the lack of comprehensive in
vivo functional validation for FOXM1 and the top candidate
compound. Furthermore, the study primarily focused on the high-
grade serous subtype, and the findings may not be generalizable
to other OC histotypes (e.g., clear cell, mucinous), which have
distinct molecular profiles and clinical behaviors [32]. The
diagnostic specificity of FOXM1 alone remains variable, and the
pharmacokinetics and potential toxicity of the identified inhibitor
candidates remain to be fully characterized [33].

Implications for Practice and Future Research

The most impactful contribution of this study is the systematic
prioritization of FOXM1 as a high-value master regulator and
therapeutic target in OC, supported by a novel computational drug
candidate. For clinical practice, measuring FOXM1 expression
could enhance risk stratification and its integration with CA-125

may improve early detection strategies [34]. For future research,
the immediate priority is the in vitro and in vivo validation of
ZINC13597767 to confirm its efficacy and safety as a FOXM1
inhibitor. Subsequently, exploring its synergy with existing agents
(e.g., PARP inhibitors, platinum chemotherapy) and mitotic kinase
inhibitors (e.g., barasertib, dinaciclib) is warranted. Future work
must also expand to non-serous subtypes to determine the pan-
OC applicability of this target. Finally, given emerging evidence
that FOXM1 modulates the tumor immune microenvironment,
investigating its inhibition in combination with immunotherapy
presents a compelling and novel research direction.

Conclusion

In conclusion, our integrated analysis highlights FOXM1 as
a central driver of OC pathogenesis, with profound diagnostic,
prognostic, and therapeutic implications. Dysregulation of the cell
cycle and p53 signaling pathways, coupled with the identification
of novel small-molecule inhibitors, provides a strong foundation
for targeted drug development. By bridging bioinformatics
insights with translational research, this study offers a roadmap
for improving OC outcomes, a disease that urgently requires
innovative therapeutic strategies. This conclusion aligns with the
growing body of research that recognizes FOXM1 as a therapeutic
vulnerability across multiple tumor types, including OC. The
convergence of pathway analysis, experimental validation, and
drug screening echoes the strategy proposed in precision oncology
frameworks [35] suggesting that such integrative approaches may
accelerate clinical translation in high-burden cancers such as OC.
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