
Review Article
Volume 4 Issue 5 - April  2017 
DOI: 10.19080/JOCCT.2017.04.555649

J Cardiol & Cardiovasc Ther
Copyright © All rights are reserved by  Luis R Lopez

Pro-Atherogenic Oxidized Ldl/β2-Glycoprotein I 
Complexes in Diabetes Mellitus: Antioxidant Effect 
of Statins
Luis R Lopez1*, Ignacio Garcia-De La Torre2, Eiji Matsuura3 and Paul RJ Ames4

1Corgenix Medical Corporation, USA
2 Department of Immunology and Rheumatology, University of Guadalajara, Mexico
3Department of Cell Chemistry, Okayama University, Japan
4 Queen Mary University of London, UK

Submission: February 16, 2017; Published: April 26, 2017

*Corresponding author: Luis R Lopez, Corgenix Medical Corporation, 11575 Main Street, #400, Broomfield, CO 80020, USA,  
Tel: ; Fax: +1 303 457 4519; Email: 

Introduction
Diabetes mellitus (DM) is the fifth deadliest disease in the 

United States with an annual economic cost estimated over 
$100 billion. Cardiovascular disease (CVD) represents the 
most life threatening consequence of DM accounting for the 
death of up to 65% of DM patients. Aggressive efforts aimed at 
treating and controlling the classic CVD risk factors over the 
last few decades have brought along a marked reduction in CVD 
morbidity and mortality in the US, though the morbidity and 
mortality attributable to CVD from DM and obesity continues 
to show an upward trend [1,2].

The laboratory diagnosis of DM relies on the presence 
of abnormal fasting glucose and/or an abnormal glucose 
tolerance test alongside abnormalities of lipid and protein 
metabolism due to defects in insulin production or activity [3]. 
All these metabolic abnormalities lead to a pro-atherogenic  

 
oxidative inflammatory environment. Recent research has 
further unraveled the pathogenic mechanisms of CVD in DM 
mostly due to intrinsic rather than extrinsic factors. Because 
CVD remains the main cause of death in DM, there is a strong 
need to identify more specific mechanisms that can be acted 
upon to develop better CVD prevention and bend down the 
incidence and mortality curves [4].

Atherosclerosis is a chronic progressive disease (Figure 
1) characterized by two low grade inflammatory components, 
one prevalently systemic that starts early in life affecting 
the vascular endothelium, monocytes and platelets, and 
another localized to the arterial wall (plaques) that develops 
in later adulthood [5,6]. Early identification and intervention 
is important to prevent disease progression. The complex 
inflammatory process initiates as oxidative stress (lipoprotein 
oxidation) and progresses with the participation of immuno-
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Abstract

Premature atherosclerotic cardiovascular disease (CVD) is a well known complication of diabetes mellitus (DM) associated with 
significant morbidity and mortality. The development of atherosclerosis is largely promoted by oxidative stress and chronic inflammation. 
Elevated low-density lipoprotein (LDL) is a known atherosclerotic risk factor but LDL must be modified to become atherogenic. Inflammatory-
derived reactive oxygen and nitrogen species oxidize LDL (oxLDL) giving rise to lipid peroxides and aldehydes that favor the initiation and 
progression of atherosclerotic lesions. Beta-2-glycoprotein I (β2GPI) is a lipid binding plasma protein with pleiotropic functions that binds 
oxLDL via specific oxidative-derived ligands to form pro-atherogenic oxLDL/β2GPI complexes and in this guise exerts a buffering effect upon 
LDL oxidation. Statin (Rosuvastatin) treatment lowered serum levels of oxLDL/β2GPI complexes in a group of DM patients compared to 
statin untreated DM patient. The oxLDL/β2GPI decrease was independent from the reduction of cholesterol, LDL and triglycerides but likely 
dependent on Rosuvastatin reduction of nitrates (NO3-) suggesting that Rosuvastatin may impact on the oxidative metabolism of lipids and/
or LDL. In addition, the oxLDL/β2GPI complex may represent a surrogate marker of oxidative inflammation in DM. 
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inflammatory mononuclear cells of the innate and adaptive 
immune system [7,8]. The newly issued American College 
of Cardiology and American Heart Association (ACC/AHA-
2103) Guideline on the Treatment of Blood Cholesterol to 
Reduce Atherosclerotic Cardiovascular Risk in Adults took 

these concepts into consideration by diverting the focus away 
from just measuring cholesterol into taking in consideration 
LDL, statin response and inflammatory biomarkers as more 
clinically relevant risk factors [9].

Figure 1: Schematic representation of the oxidative inflammatory events that lead to the development of atherosclerotic lesions: endothelial 
membrane dysfunction, increased expression of adhesion molecules with chemotatic and inflammatory cytokine production facilitate 
the extravascular migration of LDL, mononuclear cells and circulating inactive (closed) form of β2GPI into the arterial wall. An oxidative 
inflammatory environment (reactive oxygen species [ROS], reactive nitrogen species [RNS]) of the arterial wall promotes the following: 
oxidative modification of LDL, configuration change of β2GPI into an open and reactive form, oxLDL/β2GPI complex formation with migration 
and activation of macrophages. These events facilitate the excessive intracellular accumulation of oxidized lipoproteins (oxLDL/β2GPI 
complexes) via scavenger receptors. Excess oxLDL and oxLDL/β2GPI complexes are released back into circulation. This process may 
also lead to autoantibody (anti-oxLDL, anti-β2GPI or oxLDL/β2GPI autoantibodies) and immune complex production that further enhance 
macrophage lipid uptake via Fcγ receptors accelerating foam cell and plaque formation. Auto-propagation of these arterial wall events 
contribute to the progression of vascular changes including the proliferation of smooth muscle cells and development of unstable necrotic 
core in the atherosclerotic plaques making them prone to rupture into the arterial vascular space.

Oxidative stress and low grade chronic inflammation 
(oxidative inflammation) contribute to premature 
atherosclerotic CVD in DM [10]. Indeed, the abnormal lipid 
profile of diabetes associates biochemically with lipid 
peroxidation, a process whereby superoxide radical (O2•-
) released by neutrophils or endothelial cells may attack 
double bonds of arachidonic acid allowing the formation of 
oxygen containing cyclic structures termed isoprostanes 
[11]. Isoprostanes are recognized markers of in vivo oxidative 
stress and their plasma or urinary concentrations are elevated 
in DM [12,13]. In the course of oxidative inflammation, 
endothelial and mononuclear cells also generate additional 
reactive nitrogen species (RNS) including nitric oxide (NO•) 
that behaves as a pathogenic mediator and/or as a cytotoxic 
molecule [14]. However, most of NO• mediated pathogenicity 
depends on the formation of secondary intermediates such as 
peroxynitrite anion (ONOO-) and nitrogen dioxide (•NO2) that 
are more reactive and toxic than NO• [15]. In the presence of 
superoxide radical (O2•-), NO• gives rise to ONOO-, a strong 
highly reactive oxidant with very short biological half-life 
producing nitrated proteins [16].

Reactive oxygen species (ROS) and RNS may exert free 
radical attack on low-density lipoproteins (LDL) releasing lipid 

peroxides and highly reactive aldehydes (4-hydroxynonenal) 
that form specific adducts with lysine inducing the post-
translational modification of lipoproteins, with consequent 
gain or loss of function. During the same process LDL becomes 
oxidized (oxLDL) turning into a highly pro-inflammatory and 
atherogenic [17,18]. Beta2-Glycoprotein I (β2GPI) is a lipid-
binding plasma protein involved in thrombosis, fibrinolysis, 
apoptosis, atherosclerosis and angiogenesis [19]; it binds 
oxLDL via specific oxidative-derived ligands to form oxLDL/
β2GPI complexes [20]. Elevated plasma levels of oxLDL/
β2GPI complexes were initially described in patients with 
antiphospholipid syndrome (APS) [21] and systemic lupus 
erythematosus (SLE) [22], but later found in non-autoimmune 
chronic inflammatory diseases such as chronic nephropathies, 
coronary artery disease, myocardial infarction and DM 
[23,24]. OxLDL and β2GPI have been co-localized in human 
atherosclerotic lesions by immune-hysto chemical staining 
implying a pro-atherogenic role [25,26]. In the presence 
of anti-β2GPI antibodies, macrophages ingest oxLDL/β2GPI 
complexes at an enhanced rate providing further support 
for their pro-atherogenic role [27,28]. Current experimental 
evidence, including in vivo imaging techniques, identified 
the atherosclerotic lesion as the primary site of oxLDL/β2GPI 
complex formation [20,29].
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In DM, serum levels of oxLDL/β2GPI complexes were 
particularly elevated in patients with greater intima-media 
thickness (IMT) [30], but were lower in patients taking statins 
[24]. These observations indicate that oxLDL/β2GPI complexes 
may behave as modifiable biomarkers and/or as risk factors 
for atherothrombotic complications of DM. In addition, the 
lower oxLDL/β2GPI concentration in DM patients on statins 
suggested that this class of drugs may prevent or decrease 
the oxidative modification of LDL possibly by an antioxidant 
mechanism. Indeed HMG-CoA reductase inhibitors (statins) 
bear antioxidant properties in addition to their lipid-lowering, 
anti-thrombotic and anti-inflammatory effects [31,32]. We 
tested the hypothesis that Rosuvastatin had antioxidant 
effects in DM by performing an open label interventional 
trial and observed a significant change in serum oxLDL/β2GPI 
concentration as the primary endpoint. In this review we 
discuss the role of oxidative stress in atherogenesis and the 
antioxidant effect of statins on oxLDL/β2GPI complexes.

Oxidative Inflammation and Atherogenesis in DM 
The pathogenesis of atherosclerosis in DM is multi factorial:

i. Chronic hyperglycemia from insulin deficiency 
[33,34].

ii. Chronic dyslipidemia characterized by decreased 
high-density lipoprotein (HDL), changes in the HDL 
subpopulations, raised triglycerides, and unchanged or 
only slightly elevated low-density lipoprotein (LDL) [35].

iii. Metabolic syndrome characterized by obesity, 
dyslipidemia, hypertension and insulin resistance [36]. 
All three promote increased oxidative stress that initiate 
and perpetuate vascular damage and atherothrombotic 
complications [37]. 

Under physiologic conditions, oxidation should be well 
counteracted by natural enzymatic and non-enzymatic 
antioxidant mechanisms. In DM, oxidation overrides 
antioxidant mechanisms [38,39] and initiates endothelial 
dysfunction by favoring the expression of a pro-adhesive and 
pro-thrombotic surface that allow the migration of immuno-
inflammatory cells into the arterial wall (Figure 1). There, local 
pro-chemotactic and inflammatory cytokines further recruit 
and activate immuno-inflammatory cells that propagate lipid 
accumulation, oxidative inflammation and the development 
of the typical progressive atherosclerotic lesions (plaques) 
[40,41]. Moreover, early inflammation increases the expression 
of cell surface receptors and the intracellular accumulation of 
oxLDL by local arterial mononuclear cells process mediated by 
scavenger and Fcγ receptors [28].

Multiple efforts by several groups aimed at enhancing the 
antioxidant defense in DM and CVD patients. Serum and urine 
bio makers of systemic oxidative stress correlated with blood 
glucose levels and responded to anti-diabetic intervention 

[42,43]. In vivo studies indicated that oxidative stress from 
hyperglycemia starts well before clinical complications 
become evident, underscoring the importance of glucose 
control to minimize long term complications of oxidative 
inflammation in DM. Metformin treatment lowered urinary 
excretion of 8-isoPGF2a and 11dhTxB2 in newly diagnosed 
DM patients suggesting that despite a good metabolic 
improvement, metformin also behaved as an antioxidant and 
antithrombotic agent in DM [44]. Some epidemiological studies 
have demonstrated a weak inverse relationship between 
stroke risk and ingestion of antioxidant foods. Other clinical 
trials have shown conflictive results regarding the protective 
effect of antioxidants against CVD outcomes [45,46]. Several 
ongoing clinical trials are assessing the effectiveness of statins 
from an antioxidant perspective; so far these studies have 
suggested a close relationship between oxidative inflammation 
and atherogenesis but the usefulness of antioxidant-based 
therapeutics on CVD remains controversial. 

Atherogenic oxLDL and oxLDL Complexes
Oxidation of LDL is a key contributor to the initiation and 

progression of atherosclerosis [7,47] and is a complex process, 
in going from “minimally oxidized” to more “extensively 
oxidized” LDL particles induces the expression of adhesion 
molecules on endothelial cells and the release of chemotactic 
cytokines into the circulation [48]. These events allow blood 
monocytes to adhere to the arterial wall and to migrate into 
the arterial intima, where they differentiate into macrophages. 
In turn, these activated macrophages enhance a pro-oxidant 
environment of the arterial wall, causing intensive oxidative 
modification of LDL lipoproteins including cholesteryl esters, 
phospholipids and apolipoprotein B [49]. Because oxLDL 
becomes unrecognizable by LDL receptors, it is taken up by 
scavenger receptors, which facilitate a persistent intracellular 
accumulation of LDL by macrophages [50] transforming 
them into the characteristic foam cells. As the lesion evolves, 
these elements contribute to the morphological changes that 
characterize the vulnerable plaques with an unstable lipid-
rich necrotic core. Advanced lesions may undergo a necrotic 
breakdown and plaque rupture that precipitate intra-vascular 
thrombosis with acute occlusion clinically expressed as 
unstable angina, myocardial infarction, stroke, and/or sudden 
cardiac death [51].

 Although the oxidation of LDL occurs primarily in the 
vascular wall, recent studies have provided evidence for the 
presence of oxLDL in blood [52]. Indeed numerous studies have 
established oxLDL as an effective marker for the presence of 
atherosclerosis, detecting both subclinical disease and more 
advanced or severe CAD [53,54]. Because oxLDL is highly 
unstable with a very short half-life (30 seconds) in the systemic 
circulation [55], it is difficult to measure accurately by common 
immunoassays. In addition, some lipid binding plasma proteins 
such as β2GPI interact with circulating oxidized lipoproteins to 
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buffer their deleterious effects. This may cause reduced assay 
sensitivity and false-negative results as most of the oxLDL 
assays use monoclonal antibodies directed against just one or 
a few of the epitopes present on lipid or protein moieties. This 
phenomenon has hampered the use of oxLDL in CVD clinical 
trials and clinical laboratory to assess its predictive role in 
atherogenesis. 

Because immune-staining of human atherosclerotic lesions 
co-localized β2GPI with oxLDL, the relationship between these 
molecules was further investigated [25,26]. β2GPI is a 50-kDa 
single-chain phospholipid-binding plasma protein composed 
of 326 amino acid residues arranged in 5 homologous repeats 
or domains. The fifth domain contains a positively charged 
amino acid patch important in anionic phospholipid and oxLDL 
binding [56]. Unlike native LDL, β2GPI binds oxLDL via specific 
oxidative-derived ligands to form stable and pro-atherogenic 
oxLDL/β2GPI complexes [20,57] in an attempt what to 
quench in an antioxidant fashion the pro-inflammatory and 
pro-atherogenic effects of oxLDL. But in doing so, oxLDL/
β2GPI complexes also become immunogenic triggering the 
production of pro-atherothrombotic auto antibodies and 
immune complexes.

It is now recognized that the immune system plays a role 
in blood coagulation. Autoimmune-mediated thrombosis 
refers to auto antibodies that promote venous and arterial 
thromboembolic events in patients with systemic lupus 
erythematosus and antiphospholipid syndrome who develop 
premature atherothrombotic CVD with significant morbidity 
and mortality [58,59]. Endogenous pro-atherogenc oxLDL/
β2GPI complexes initially described in autoimmunity [22] 
have been associated with the development of atherosclerotic 
CVD in non-autoimmune diseases [23,24]. Serum levels 
in higher oxLDL/β2GPI quartiles were associated with an 
geographically determined disease severity and give a 3.5 
risk for adverse outcomes in acute coronary syndromes 
[60,61]. Interestingly, statin treatment reduced oxLDL/β2GPI 
complexes independently from LDL-lowering effects likely 

via an antioxidant mechanisms [62,63]. Thus, oxLDL/β2GPI 
complexes meet current criteria for biomarkers of CVD risk:

a. To have a direct mechanistic relevance to atherosclerosis 
(causal relationship).

b . To be measured quantitatively with available technology 
that is accurate, reproducible and cost effective.

c. To permit patient stratification for severity and 
outcomes.

d. To be modified by therapeutic intervention. In summary, 
the endogenous or metabolically generated oxLDL/β2GPI 
complexes seem to represent a bona fide biomarker for 
identifying individuals at risk for atherosclerosis and 
useful to develop personalized treatment and/or CVD 
preventive programs.

OxLDL/β2GPI and its immune complexes up-regulate 
the macrophage expression of scavenger and Fcγ receptors, 
favoring enhanced oxLDL/β2GPI uptake followed by its rapid 
accumulation in lysosomes where an immune response (innate 
and adaptive) may be mounted. Experiments evaluating 
the intracellular trafficking of β2GPI within macrophages 
showed that free β2GPI was poorly incorporated in late 
endosomes and stagnated there, whereas complexed β2GPI 
(to phosphatidylserine liposomes or oxLDL) was quickly 
transported to lysosomes; the addition of antibodies to β2GPI 
further accelerated this process [64]. β2GPI auto reactive 
CD4+ T cells have been identified in patients with APS that 
preferentially recognized a cryptic peptide (residues 276-
290) in β2GPI domain V that contains the phospholipid-binding 
site. Macrophages stimulated with phospholipid-bound β2GPI 
induced an immune response to peptide 276-290 in a HLA-DR-
restricted manner, while β2GPI or phospholipids alone did not 
[65]. In this respect, β2GPI can be viewed as a component of 
the innate immunity; but once bound to oxLDL, the complex 
may shift to the generation and maintenance of an adaptive 
immune response that play an important role in atherogenic 
inflammation via the inflammasome/IL-1B system [39].

Effect of Statins on oxLDL/β2GPI Complexes
Table 1: Demographics and baseline characteristics of diabetes patients (n=111).

DM Rosuvastatin Treatment 
group (n=76)

DM Control Group Without 
Rosuvastatin (n=35) P value^

Age in years (mean±SD) 54.2 ±12.3 55.8 ±7.5 0.493

Sex (Female/Male) 53 (70%)/23 (30%) 27 (77%)/8 (23%) 0.535

Disease duration (years) 7.7 ±7.0 7.6 ±6.2 0.905

Hypertension (%)* 19 (25%) 6 (17%) 0.499

Obesity (%)+ 36 (47%) 23 (66%) 0.111

Oral hypoglycemics (%) 61 (80%) 30 (86%) 0.668

Insulin (%) 13 (17%) 5 (14%) 0.798

ACE Inhibitors (%) 7 (9%) 6 (17%) 0.373

Cholesterol (mg/dL) 199.7±36.3 226.7±25.9 0.0014
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LDL (mg/dL) 120.0±32.3 141.4±28.3 0.0047

Triglycerides (mg/dL) 223.6±125.7 227.7±120.3 0.871

HDL (mg/dL) 45.9±9.7 45.5±9.3 0.798

Glucose (mg/dL) 157.8±80.6 137.1±67.9 0.192

HbA1c (%) 7.6±2.2 7.5±1.9 0.776

CRP (mg/dL) 0.25±0.3 0.28±0.27 0.663

^Chi-square or Fisher’s exact test, *Hypertension: systolic >130mm Hg and/or diastolic >85mm Hg, +Obesity: >27 BMI for Mexican population

DM: Type 2 Diabetes Mellitus; LDL: Low-Density Lipoprotein; HDL: High-Density Lipoprotein; HbA1c: Glycosilated Haemoglobin; CRP: C 
-reactive protein

OxLDL/β2GPI complexes are indicative of systemic 
oxidative inflammation in obese middle age men and DM, and 
may be used to assess pro-atherogenic pathways because 
circulating levels of oxLDL independently predict future CVD 
events [24,66,67]. It was particularly important to determine 
effective ways to modify oxLDL/β2GPI levels as these 
complexes have been associated with the severity and adverse 
outcomes of coronary disease [60,61]. The effect of statins on 
oxLDL/β2GPI complexes was studied by our group [62] on 111 
type 2 DM patients (80 females, 31 males, mean age of 54.7 
years). One group of 76 patients received 10mg daily for 6 

weeks of oral Rosuvastatin while a control group of 35 patients 
did not receive Rosuvastatin. Serum samples taken at baseline 
and after 6 weeks were tested at the end of the study. The 
baseline clinical and laboratory variables of DM patients taking 
Rosuvastatin and control groups are shown in Table 1. DM 
patients in the Rosuvastatin group were stratified according 
to their lipid profile. In addition to oxLDL/β2GPI complexes, 
nitrite (NO2-), nitrate (NO3-), asymmetric dymethyl arginine 
(ADMA) nitrotyrosine (NT) and paraoxonase activity (PON) 
were measured in all samples.

Table 2: Effect of Rosuvastatin treatment on diabetes patients (n=76).

Pre-treatment 
(mean±SD)

Post-treatment 
(mean±SD) % change P value^

oxLDL/β2GPI (U/mL) 0.79±0.49 0.53±0.36 -32.9 <0.001

Cholesterol (mg/dL) 199.5±36.1 150.3±34.8 -24.7 <0.001

LDL (mg/dL) 120.1±31.9 76.5±34.9 -36.3 <0.001

Triglycerides (mg/dL) 222.1±125.5 161.1±78.6 -27.5 <0.001

HDL (mg/dL) 46.1±9.7 45.4±8.8 -1.5 0.570

Glucose (mg/dL) 160.2±82.8 155.2±76.3 3.1 0.883

HbA1c (%) 7.6±2.2 7.6±1.9 0 0.902

CRP (mg/dL) 0.25±0.3 0.24±0.29 -4 0.946

NO2- (μM) 23.5±13.8 17.5±10.5 -25.5 0.004

NO3- (μM) 59.9±39.3 38.1±31.7 -36.4 <0.001

NT (nM) 9.86±10.8 8.1±9.2 -17.6 0.347

ADMA (μM) 0.59±0.10 0.56±0.11 -5.1 0.147

PON (U/L) 350.9±163.4 365.2±173.6 4.1 0.646

^Paired t-test or Wilcoxon Signed Rank Sum test
Pre-treatment: baseline measurement; Post-treatment: 6-week measurement after Rosuvastatin treatment (10mg/day); oxLDL/β2GPI: 
Oxidized Low-Density Lipoprotein/Beta2-Glycoprotein I; LDL: Low-Density Lipoprotein; HDL: High-Density Lipoprotein; HbA1c: Glycosilated 
Haemoglobin; CRP: C -reactive protein; NO2-: Nitrite; NO3-: Nitrate; NT: Nitrotyrosine; ADMA: Asymmetric Dimethylarginine; PON: Paraxonase 
Activity

Rosuvastatin treatment caused a significant decrease 
of oxLDL/β2GPI complexes (32.9%) along with cholesterol 
(24.7%), LDL (36.3%) and triglycerides (27.5%). Among 
the nitric oxide metabolites, Rosuvastatin treatment also 
decreased NO2- (25.5%) and NO3- (36.4%) (Table 2). The 
observed decrease of oxLDL/β2GPI complexes was more 
noticeable in patients with dyslipidemia (37.4%) compared 
to those with normal lipid profile (22.4%). Interestingly, NO2- 
decreased more in dyslipidemics than in non-dyslipidemic 

patients (29% vs 18.8%) while NO3- decreased in the same way 
(42.9% vs 21.8%). The decrease of oxLDL/β2GPI complexes by 
Rosuvastain treatment in these DM patients was independent 
of the lipid lowering effects of the statin. Further, only NO3- 
was an independent predictor of oxLDL/β2GPI complexes 
(t=2.0, p=0.04).

Support to an antioxidant effect of statin indirectly 
assessed by a decrement of oxLDL/β2GPI complexes comes 
from very few studies.
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a) A randomized, double blind, placebo controlled pilot 
study of 37 consecutive SLE patients receiving 40mg daily 
atorvastatin or placebo for 12 months demonstrated a 
decrease of oxLDL/β2GPI complexes [63]. In this study, 
after correction for age and disease duration oxLDL/β2GPI 
complexes decreased by 27% (p=0.002). 

b) Blinden et al. [68] studied the effect of statin therapy 
(Atorvastatin, Simvastatin, Rosuvastatin, Lovastatin, 
Pravastatin and Fluvastatin at doses between 5-80mg) in 
186 coronary artery disease patients undergoing elective 
cardiac catheterization. There was a significant dose-
dependent reduction of oxLDL/β2GPI complexes, more 
noticeable at atorvastatin dose equivalents between 20-
80mg.

c) Statin influence of oxLDL/β2GPI levels on CVD 
patients have been further confirmed by Berger et al. [69] 
and Gurbel et al. [70]. This effect was independent and 
inversely associated with inflammation. These finding 
support the concept of a dose dependent anti-oxidant effect 
of statins. 

Discussion
Our evaluation of the significance of oxLDL/β2GPI complexes 

in DM demonstrated an independent association with some 
clinical (obesity and hypertension) and biochemical variables 
(nitric oxide metabolites) [62]. OxLDL/β2GPI complexes were 
higher in males than females. This gender difference reflects 
the notion that in DM oxidative inflammation is enhanced 
[71] particularly in men [72]. With regards to biochemical 
variables the only independent predictor of oxLDL/β2GPI was 
nitrate (NO3-). This RNS may be viewed as an “inflammatory 
metabolite” of NO• (as opposed to NO2- that may be viewed as 
the “vascular” metabolite). Thus, NO3- may contribute to LDL 
oxidation and formation of the oxLDL/β2GPI complex in DM 
[20].

Figure 2: Schematic representation of the antioxidant effect of 
Rosuvastatin on oxLDL/β2GPI complex formation. Among the 
diverse effects described for statins, Rosuvastatin inhibited the 
nitrate (NO3-) mediated oxidative stress pathway decreasing 
the oxidative modification of native LDL (nLDL), the interaction 
with β2GPI and oxLDL/β2GPI complex formation, all leading to 
reduced intracellular accumulation of oxLDL/β2GPI complexes 
by macrophages and plaque progression in patients with 
diabetes.

Rosuvastatin administered daily for 6 weeks caused 
a significant reduction of serum oxLDL/β2GPI complexes 
(Figure 2). This reduction was accompanied by lower total 
cholesterol, LDL and tryglicerides, particularly in patients 
with dislipidemia. However, the reduction of oxLDL/β2GPI was 
statistically independent of any statin-mediated decrease of 
total cholesterol, LDL and tryglicerides. It is important to point 
out that oxLDL/β2GPI levels were higher in DM patients with 
dyslipidemia, consistent with the concept that patients with 
elevated lipid levels may be prone to or sustain more intense 
oxidative damage.

Statins inhibit the enzyme HMG-CoA reductase, preventing 
the generation of mavelonate and the subsequent biosynthesis 
of cholesterol. Mevalonate is also a precursor of isoprenoid 
intermediates and one of these geranylgeranylated proteins 
(RhoA) is implicated in intracellular signaling [73,74]. Through 
the inhibition of protein prenylation, such as Ras and Rho, 
statins activate the MAPK cascade or NF-κB pathways that 
induce proteins with anti-inflammatory, anti-proliferative 
and anti-thrombotic effects [75]. In addition, by acting on 
SREBP-2, statins up-regulate the expression of genes coding 
for paraoxonase, the enzyme that accounts for most of the 
antioxidant effect of HDL [76]. Thus, the inhibition of RhoA by 
statins have a number effects on the vasculature that could be 
beneficial in hypercoagulable disorders by improving nitric 
oxide synthase activity, regulation of angiogenesis, reduction 
of vascular inflammatory and prothrombotic activities and 
atherosclerotic plaque stabilization [77,78]. By using plasma 
biomarkers of oxidation such as oxLDL/β2GPI, we can clinically 
evaluate the effect of treatment on this event.

Because the benefits of statins on the cardiovascular 
system are beyond those on cholesterol metabolism we 
speculated that Rosuvastatin may exert an antioxidant effect, 
either by enhancing the activity of PON and of nitric oxide 
synthase or by interfering with oxidative inflammatory 
mechanisms that promoted the generation of oxLDL and their 
consequent interaction with β2GPI [79-82].

Our studies suggest that statins would have the same 
antioxidant effect on oxLDL/β2GPI complex formation in 
patients with metabolic syndrome and obesity. Fatty liver 
disease, particularly non-alcoholic steatohepatitis (NASH), 
is not only associated with insulin resistance, obesity, 
metabolic syndrome, liver fibrosis/cirrhosis, but also 
with atherosclerotic CVD [83]. It has been proposed that 
dyslipidemia, inflammation, oxidative stress and macrophage 
activation are early events in NASH, similar to atherosclerosis 
and perhaps they represent shared aspects of a similar disease 
process [84]. In this case, stains may have a more prominent 
therapeutic role as antioxidants are considered first line 
treatment for NASH.

Conclusion
These studies demonstrate that treatment with 

Rosuvastatin reduced serum levels of oxLDL/β2GPI in DM 

http://dx.doi.org/10.19080/JOCCT.2017.04.555649


Journal of Cardiology & Cardiovascular Therapy

How to cite this article: Luis R L, Ignacio G-D L T, Eiji M, Paul R A. Pro-Atherogenic Oxidized Ldl/β2-Glycoprotein I Complexes in Diabetes Mellitus: 
Antioxidant Effect of Statins.  J Cardiol & Cardiovasc Ther 2017; 4(5): 555649 . DOI: 10.19080/JOCCT.2017.04.555649.007

patients. The implications of these findings are twofold: 
statins independently reduce lipids and NO3- suggesting an 
antioxidant effect possibly mediated via lipid/nitric oxidative 
pathways; and that oxLDL/β2GPI complexes may be viewed as 
serologic biomarkers of oxidative stress.
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