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Introduction 

Small-angle X-ray scattering and polarization optical 
analysis are the most common ways of detecting long-lived 
post-transitional modifications of amino acids within protein 
structures of organisms [1]. They are both rarely used in 
laboratory studies because of the complexity of the results 
obtained and the relatively high material costs. The paper presents 
the use of gas discharge visualization (GDV) for determining 
the positional order and geometry of an organism’s molecular 
bindings in the aqueous substance [2]. This method is based 
on the initiation and study of the processes of optoelectronic 
emission from the aqueous substance. It is widely used in clinical 
trials to assess the biological function and homeostasis that are 
limited by molecular, cellular, and organism interactions [3]. The 
mechanisms of optoelectronic emission are still not studied well 
enough despite the existence of clinical and laboratory evidence of 
comparability of data obtained in GDV and electrocardiography or 
electroencephalography [4]. A huge variety of protein molecules 
of the cellular and tissue structures forms a complex picture of 
the emission of electrons and its parameters are averaged. This  

 
complicates the interpretation of the changes in the structural 
state of proteins of blood components and their relationship with 
changes in the functioning of body systems [5]. Therefore, the 
study of mechanisms of influence of physical and chemical factors 
on the parameters of optoelectronic emission of the aqueous 
substance of an organism determined by its structural state is 
especially interesting.

The purpose of this work was studying the features of the 
change in the oxidative stress on the fractal structure and the 
energy of electrons reflecting the state of whole blood proteins, 
red cell mass (RCM), platelet-rich plasma, and plasma.

Material and Methods 

For a scientific research, a blood sample was taken into a 
standard 4.5ml vacuum tube with 3.8% sodium citrate. The tubes 
were placed in an EBA 20 centrifuge (Hettich, Germany) and 
were centrifuged for 10 minutes at the speed of 3500rpm. After 
rotation, the blood was divided into 3 main components: plasma 
(top layer), platelet-rich plasma (middle layer), and red cell mass 
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(lower layer). The studied blood fractions were extracted from the 
tube using a syringe needle. The erythrocytes were washed twice 
with physiological saline after being separated from plasma. 0.5% 
hydrogen peroxide solution in a 5:1 ratio was added in order to 
simulate oxidative stress in a tube with whole blood, red cell mass, 
platelet-rich plasma, and blood plasma.

A GDV-device was used to study the processes of optoelectronic 
emission from a drop of whole blood or its components. The 
emission of electrons and photons was stimulated by bipolar 
electric pulses with an amplitude of 9kV with a duration of 3 
microseconds, and a frequency 1024Hz. After being emitted from 
the surface and an inner part of the blood drop (8±0.07)×10-
9m3, electrons are accelerated by an electric field, generating 
electron avalanches. These avalanches cause ionization of the air 
and form a sliding gas discharge on the surface of the lens glass of 
the camera. The glow of the gas is converted into a digital code. 
It is later displayed on a computer screen as a gas-discharge 
image which is presented as spatially distributed glow sections 
with different brightness, length, and frequency. The parameters 
of the luminescence pattern are defined by the energy, amount, 
and angular distribution of electrons emitted from the blood drop 
and depending on the structural state of inner and outer parts 
of the drop, as well as the energy state of electrons that provide 
interaction between molecular bindings. The parametric analysis 
of the luminescence pattern, which is performed automatically 
using “GDV Scientific Laboratory” software, shows the details 
about the fractal structure, the shape coefficient of the studied 
blood drop, the degree of molecular bindings’ ordering in the 
drop, etc. [2].

Results 

Figure 1 shows averaged patterns of gas-discharge images of 
blood and its components before and after oxidation. There is a 
significant difference in the patterns of luminescence of plasma, 
platelets, and erythrocytes. In the initial state, blood is depicted as 
a shiny disk with radial traced of electron motion. These electrons 
are emitted from the surface and the inner part of the drop. The 
spatial arrangement and the number of streamers are not the 
same for different blood components. Considering that streamer 
directions are linked to the channels of facilitated motion of 
electrons in blood and its components, they indicate the direction 
of planes with the most dense packing of molecular bindings [6,7]. 
There are three directions in the initial state of plasma, four in the 
platelet-rich plasma, seven in the red cell mass, and six in whole 
blood.

After the exposure to oxidative stress, the picture of the 
glow of blood and its components has significant changes. The 
six directions in the blood are preserved after the modeling of 
oxidative stress. They differ in the parameters of the emitted 
electrons. After modeling of oxidative stress of blood plasma, the 
directions of electron motion in the volume and outside of the 
drop are the same. However, the width of the facilitated motion 
channels is significantly reduced (Figure 1). In case of platelets, 
the emission of electrons from the drop surface prevails, thus 
changing its shape (Figure 1). The picture of luminescence of red 
cell mass after its oxidation reproduces the gas-discharge image 
of the blood in the initial state. The observed changes in the gas-
discharge picture of blood and its components are accompanied 
by changes in the luminescence parameters.

Figure 1: Bioelectrograms (in the intensive palette) of blood (a, A) and its components: plasma (b, B); platelets (c, C); erythrocytes (d, D) 
before (a, b, c, d) and after oxidation (A, B, C, D). Zoom 2×.
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Table 1: Parameters describing features of luminescence patterns of blood and its components before and after oxidative stress.

Initial 
Components

Area of Luminescence 
(Pixels)

Intensity of Luminescence 
(Relative Units)

Shape Coefficient 
(Relative Units)

Entropy (Relative 
Units)

Fractality Coefficient 
(Relative Units)

Plasma 4347 98.14 2.6 2.19 1.77

Platelet-rich 
plasma 4594 95.36 2.58 2.1 1.75

Red cell mass 
(RCM) 4345 96.59 2.58 2.13 1.75

Blood 4244 97.95 2.82 2.11 1.79

Components After 
Oxidative Stress

Area of Luminescence 
(Pixels)

Intensity of Luminescence 
(Relative Units)

Shape Coefficient 
(Relative Units)

Entropy (Relative 
Units)

Fractality Coefficient 
(Relative Units)

Plasma 3900 93.38 2.46 2.039 1.73

Platelet-rich 
plasma 3837 94.51 2.32 1.919 1.74

Red cell mass 
(RCM) 4269 96.13 2.96 2.124 1.79

Blood 4154 93.14 2.51 2.074 1.76

Table 2: Relative changes in luminescence parameters of blood and its components after oxidative stress, %.

Components After 
Oxidative Stress

Area of 
Luminescence

Intensity of 
Luminescence Shape Coefficient Entropy Fractality Coefficient

Plasma -17.8 -4.8 -5.4 -6.9 -2.2

Platelet-rich plasma -16.5 -0.9 -10.1 -8.6 -0.6

Red cell mass (RCM) -17.5 -0.5 14.7 -0.2 2.2

Blood -2.1 -4.9 -11 -1.7 -1.7

Table 1 shows the values of the parameters of luminescence 
patterns, which, by their modifications, reveal the features of 
the processes occurring in blood and its components during 
modeling of oxidative stress. Table 2 shows relative changes in 
those parameters after modeling of oxidative stress in blood and 
its components. The most noticeable changes after modeling of 
oxidative stress in the blood and its components can be seen in 
the area, the shape coefficient, and the luminescence entropy. 
Meanwhile, the most significant decrease in these parameters 
were observed for plasma, red cell mass, and platelets.

The luminescence area is determined by the amount and 
energy of the emitted electrons and, as a rule, represents the 
destructive features of the substance. These features are linked 
to a change in the spatial orientation of molecular bindings and 
interactions between them [7]. Based on data on the intensity and 
area of luminescence, our calculations indicate that the average 
energy of electrons emitted from the plasma increases by 6% and 
by 16% for the platelet-rich plasma.

In this case, the decrease in the luminescence area of blood 
components is associated with the decrease in the number 
of electrons emitted from an inner part of the drop. Due to the 
decrease in the values of the form factor and entropy, these changes 
can be justified by the changes in the positional order of molecular 
bindings and their size. The decrease in the entropy and form 

factor describing the spatial orientation of molecular bindings 
in the blood and its components indeed indicates a change in 
the positional order in the protein molecules arrangement after 
oxidation.

A decrease in entropy after oxidation of plasma and red cell 
mass, which is a measure of the system disorder, particularly 
justifies the decrease in the positional order of molecular 
bindings in the mentioned blood components [8]. At the same 
time, a decrease in the fractality coefficient, which is a measure of 
the geometric configuration of the positional order of molecular 
bindings, and the shape coefficient, which measures their size 
distribution, indicate changes in the spatial arrangement of these 
bindings.

Thus, the destructive processes taking place in the blood and 
its components during their oxidation can be explained by the 
changes in the parameters of optoelectronic emission. During 
oxidative stress, there is a disruption of the positional order in the 
molecular bindings’ arrangement and, therefore, there is a change 
in the distribution of electrons during free-radical reactions. 
It is possible to assume the mechanism of both blood and the 
cardiovascular system diseases by the way of the electron energy 
distribution, their angular distribution during emission based on 
the revealed correlations between the emission parameters and 
the adaptive capabilities of the blood system [9,10]. In particular, 
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the most significant changes in protein plasma molecules indicate 
a high availability of its proteins for peroxide reactions. The 
high sensitivity of platelets to oxidative stress, which provides a 
reduction in the emission parameters, is especially interesting. 
This indicates the formation of molecular cross links blocking 
surfaces of the platelets’ certain sections [11].

Conclusion 

The performed studies of blood and its components (plasma, 
platelet-rich plasma, and red cell mass) before and after oxidative 
stress using GDV show that the change in the parameters of 
optoelectronic emission of blood components after modeling of 
oxidative stress has the following reasons:

a) Changes in the positional order of molecular associates;

b) A decrease of the number of emitted electrons, that are 
linked to the change of the kind of intermolecular bonds inside 
and between associates, and an increase of their energy.

The obtained data can be used for evaluating the state of 
proteins of blood and its components, as well as the degree of 
biological structures damage under oxidative stress. Having all 
the data about the angular distribution of emitted electrons, the 
use of gas discharge visualization (GDV) can be used for revealing 
structural features of blood components when exposed to physical 
factors.
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