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Introduction
Diabetes is a chronic disease characterized by elevated blood 

sugar levels resulting from either a lack of insulin production 
or resistance to insulin. About 230 million people worldwide 
had diabetes in 2010. The global figure of people with diabetes 
is projected to increase to 333 million in 2025, and 430 million 
in 2030 [1]. The majority of diabetes patients are not insulin-
dependent and able, at least initially, to produce the hormone. 
This type of diabetes mellitus (DM) is termed type 2 diabetes. 
Insulin resistance is a fundamental aspect of the etiology of 
type 2 diabetes. Subjects with diabetes have an increased risk of 
ischemic heart disease, atherosclerosis and nephropathy [2,3]. 
Obesity, which is a major public health concern worldwide, 
increases the risk of type-2 diabetes [3]. Type 2 diabetes is caused 
by a combination of insulin resistance coupled with insufficient 
production of insulin to overcome the insulin resistance [4]. 
Oxidative stress plays a key role in the pathogenesis of micro-and 
macrovascular diabetic complications. There is now convincing 
evidence that redox reactions associated with CO metabolism play 
key roles in adaptive processes of tissues towards oxidative stress. 
Cells and tissues produce significant amounts of CO from heme 
degradation catalyzed by microsomal heme oxygenases (HO).

Heme Proteins as Signaling Molecules 
Heme proteins play a major role in various biological functions 

and most of the reactions involving heme are redox reactions of  

 
heme iron. Heme is released from hemoproteins during red blood 
cell (RBC) destruction and is metabolized by heme oxygenases 
(HO). Three isoforms of HO have been characterized: an inducible 
form (HO-1), which is up-regulated, especially in the spleen and 
liver, in response to various types of stress, and two constitutive 
forms (HO-2 and HO-3). HO-1 generates signaling molecules 
through the catalysis of heme-carbon monoxide (CO), biliverdin, 
bilirubin and iron-each of which acts via distinct molecular 
targets to influence cell function, both proximally and distally. An 
excess of heme is deleterious to cells. The damage caused is due 
to its iron-induced prooxidant effects on all of the compounds of 
cells; these toxic effects are caused by iron catalyzing the Fenton 
reaction. Biliverdin reductase (BVR) has two isoforms: BVR-A and 
BVR-B. Through the activity of BVR, BV is immediately reduced 
to bilirubin. Extensive research has shown that the HO and BVR 
systems are closely involved in the molecular regulation of various 
pathophysiological processes, in particular in cellular adaptation 
to oxidative stress, and the anti-inflammatory response. In some 
circumstances, normal homeostatic regulatory mechanisms may 
be overwhelmed by the production of reactive oxygen species 
(ROS) and reactive nitrogen species (RNS) such as nitric oxide 
(•NO) with input from co-factors. The major antioxidant enzymes 
possess transition metals, selenium, manganese, riboflavin or 
ubiquinone at the catalytic site and the availability of cofactors 
can determine the activity of some enzymes [5]. Susceptibility to 

Abstract

Diabetes has emerged as a major threat to health worldwide. The exact mechanisms underlying the disease are unknown; however, there 
is growing evidence that excess generation of reactive oxygen species (ROS), causes oxidative stress in various organs. In diabetic patients, 
oxidative stress is closely associated with chronic inflammation and plays a key role in the pathogenesis of micro-and macrovascular diabetic 
complications. Redox reactions associated with carbon monoxide (CO) metabolism play key roles in intra- and inter-cellular signaling. Cells 
produce significant amounts of CO as a product of cellular metabolism, largely from heme degradation catalyzed by microsomal heme oxygenases 
(HOs) generating CO, biliverdin, bilirubin and iron. This review focuses on the importance of both HO-1/CO system in the pathophysiology and 
therapy of inflammation associated with diabetes. Research on these pathways will open new perspectives for the rational design of drugs 
against diabetic diseases.

Keywords: Diabetes; Oxidative stress; Reactive oxygen species; Heme-oxygenase-1; Carbon monoxide

http://dx.doi.org/10.19080/JOCCT.2018.10.555779
http://www.juniperpublishers.com/
https://juniperpublishers.com/jocct/


Journal of Cardiology & Cardiovascular Therapy

How to cite this article: L. Rochette, A. Meloux, E. Rigal, C. Vergely. Targeted Pharmacological Heme-Oxygenase-1 Induction as a Therapy for Diabetes. 
J Cardiol & Cardiovasc Ther  2018; 10(1): 555779. DOI: 10.19080/JOCCT.2018.10.555779.002

oxidative processes increases with age and with disease as a result 
of the deterioration of normal physiological control [6]. There is 
now convincing evidence that redox reactions associated with 
NO and CO metabolism play key roles in intra-and inter-cellular 
signaling, and in adaptive processes of tissues towards stress [7]. 
It is now well recognized that HO-mediated heme degradation 
has multiple roles, including antioxidant and iron reutilization 
functions. HO generates the effector molecules biliverdin/
bilirubin, carbon monoxide, and free iron/ferritin. 

Oxidative and Nitroxidative Stress in Diabetes
Given the multiplicity of their functions, mitochondria are a 

logical target for the study of metabolic diseases. Skeletal muscle 
is the major site of insulin-stimulated glucose use in the body, and 
the dysregulation of mitochondria is closely associated with insulin 
resistance in skeletal muscle and thus with the pathogenesis of 
type 2 diabetes. Inside mitochondria, electrons from reduced 
substrates move from complexes I and II of the electron transport 
chain through complexes III and IV to oxygen, forming water and 
causing protons to be pumped across the mitochondrial inner 
membrane. The electron transport system is organized so that the 
level of ATP can be precisely regulated [8]. 

The increased superoxide anion production is associated with 
the activation of major pathways involved in the pathogenesis 
of diabetic complications: 1) polyol pathway flux, 2) increased 
formation of AGEs, 3) activation of protein kinase C isoforms, 
and 4) over-activity of the hexosamine pathway. The accelerated 
flux of sorbitol through the polyol pathway has been implicated 
in the pathogenesis of secondary diabetic complications: 
cataractogenesis, retinopathy, neuropathy, nephropathy and 
cardiovascular diseases. In addition, in diabetic rats, levels of free 
carnitine and myo-inositol in the caudal nerves are decreased 
while polyol accumulates. These actions are accompanied by the 
inactivation of enzymes such as eNOS [9]. Insulin exerts redox-
regulating actions in various target organs, implying that the 
hormone has an antioxidative role [10]. The generation of ROS by 
mitochondrial oxidative phosphorylation is attenuated by insulin 
through the regulation of uncoupling protein (UCP) expression. In 
addition, the expression of NADPH oxidases (NOX) is inhibited by 
insulin [11]. In cultured adipocytes, excess glucose and palmitate 
generate ROS via NOX4 rather than by mitochondrial oxidation. 
NOX4 is regulated by both NADPH generated in the pentose 
phosphate pathway and translocation of NOX4 into lipid rafts, 
leading to the expression of monocyte chemotactic factors [12].

Heme Oxygenases and Endogenous Production of 
Carbon Monoxide

Biological systems rely on heme proteins to carry out a number 
of basic functions: such as oxygen sensing, electron transport, 
signal transduction, and antioxidant defense enzymes. Most of 
these reactions are carried out by redox reactions involving heme 
iron [13]. Heme biosynthesis includes several steps. The first and 
the last three steps occur in mitochondria; while the others take 
place in the cytoplasm [14]. Heme is released from hemoproteins 

during red blood cell (RBC) destruction and metabolized by HO. 
The majority of heme degradation products are derived from 
the catabolism of hemoglobin released from senescent RBCs, 
phagocytosed, and destroyed by the reticuloendothelial (RE) 
system, primarily in the spleen and liver. The oxidation of heme by 
the HOs requires the concerted activity of nicotinamide adenine 
dinucleotide phosphate (NADPH)-cytP450 reductase to provide 
reducing equivalents to support the reduced state of iron (Fe2+) 
and to activate molecular oxygen [15]. Humans possess control 
mechanisms to maintain iron homeostasis by coordinately 
regulating iron absorption, iron recycling, and mobilization of 
stored iron [16]. In humans, endogenous CO arises principally from 
the action of HO, which catalyzes the rate-limiting step in heme 
degradation. The HO reaction generates one molecule of CO per 
molecule of oxidized heme. HOs play an important physiological 
role in hemoglobin turnover in reticulo-endothelial tissues such 
as the spleen, kidney and liver where senescent erythrocytes are 
destroyed [17].

Functions of Heme Oxygenases 
Three isoforms of HO have been characterized: an inducible 

form (HO-1), which is up-regulated, in response to various types 
of stress, and two constitutive forms (HO-2 and HO-3). 

Heme oxygenase-1: HO-1
The inducible form of HO, HO-1, occurs at a high level of 

expression in the spleen and other tissues that degrade senescent 
red blood cells, including specialized reticulo-endothelial cells of 
the liver and bone marrow. HO-1 is also present in myeloid cells. 
These cells comprise monocytes, macrophages and dendritic cells, 
which play crucial regulatory roles in the innate and adaptive 
immune system. As the liver plays a crucial role in the body’s iron 
homeostasis (e.g. via secretion of the iron regulatory hormone: 
hepcidin) and in systemic inflammation, hepatic HO-1 may be 
important for the regulation of both systems. In an organ such as 
the liver, the induction of HO-1 expression is an important aspect 
of the anti-inflammatory, anti-apoptotic response to cellular 
stress. The gene coding for HO-1 is highly regulated [18,19]. HO-1 
is emerging as a great potential therapeutic target for treating 
cardiovascular diseases. In the vascular system, HO-1 and heme 
degradation products perform essential physiological functions 
[20]. There appears to be a relationship between HO-1 expression 
and the signaling pathways that modulate inflammatory response 
[21]. Nitrated fatty acids (NO2-FA) resulting from interactions 
between NO and eicosanoid have distinct anti-inflammatory 
signaling properties. Nitrated linoleic acid potently induces HO-1 
expression by an NO- and PPARγ-independent mechanism in 
human aortic endothelial cells [22]. These pathways may converge 
via the generation of nitrated unsaturated lipids that influence 
PMN activity and the evolution of inflammation [23].

Heme oxygenase-2: (HO-2)
HO-2 is constitutively expressed in selected tissues (brain, 

liver, and testes) and is involved in signaling and regulatory 
processes. HO-2 has three cysteine residues that are thought 
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to modulate the affinity for heme, whereas HO-1 has none [24]. 
Within the normal liver, HO-2 is constitutively expressed within 
hepatocytes, Kupffer cells, endothelial cells and Ito cells. In the 
central nervous system, it has been demonstrated that HO-2 can 
function as an O2 sensor in the brain, and the O2-CO-H2S cascade 
rapidly mediates hypoxia-induced cerebral vasodilation [25].

Heme oxygenase-3: (HO-3)
The existence of a third HO isoform, HO-3, was reported in the 

rat. HO-3 was shown to be the product of a single transcript of 
2.4kb encoding a protein of 33kDa. The HO-3 transcript was found 
in a series of organs including spleen, liver, kidney and brain [26]. 
The function of HO-3 remains unclear, but it has been cloned from 
rat brain, suggesting a neural function. This enzyme is structurally 
similar to HO-2, but is less efficient at degrading heme. 

Incidence of Endogenous HO-1 Activation
The incidence of endogenous HO-1 activation has been 

studied in experimental and clinical procedures. HO-1 activity 
provides a possible antioxidative function by accelerating the 
removal of heme to limit oxidative stress sustained through 
heme-iron dependent mechanisms. The effects of CO and bilirubin 
indirectly reproduce the incidence of HO activation. Great 
attention has been paid to the protective role of CO and carbon 
monoxide-releasing molecules (CORMs) in vascular diseases. 
Indeed, CO and CORMs exert anti-inflammatory and anti-oxidant 
actions on different organs [27,28]. Bilirubin appears to be a 
more potent antioxidant than biliverdin. Nonetheless, there is 
evidence that the direct and indirect antioxidant effects of both 
bile pigments contribute to the beneficial profile of the HO-1 
pathway. Individuals with Gilbert’s syndrome have polymorphism 
in the bilirubin UDP-glucuronosyltransferase (UGT1A1) promoter 
and are protected against a number of factors associated with 
cardiovascular complications. This polymorphism results in 

slower glucuronidation and therefore diminished excretion of 
bilirubin, leading to elevated bilirubin levels in the plasma.

Recent studies have revealed that HO-1 mediates the 
adiponectin-induced anti-inflammatory response; adiponectin 
inducing an HO-induction [29]. Adiponectin, an adipokine 
predominantly secreted from adipocytes, plays a modulatory 
role in various pathophysiological conditions. Apart from its 
well characterized role in glucose and fatty acid metabolism, 
adiponectin has received special attention in recent years 
due to its protective role in inflammation. Moreover, chronic 
HO-1 induction also modifies the phenotype of adipocytes in 
obesity from large, cytokine-producing adipocytes to smaller, 
adiponectin-producing adipocytes [30]. Emerging evidence 
indicates that links exist between HO activity and the changes in 
energy metabolism that occur during the development of certain 
diseases. Experimental evidence suggests that excessive amounts 
of free fatty acids and high glucose produce hypertrophied 
adipocytes resulting in detrimental perturbations in both 
mitochondrial and endoplasmatic reticulum function. These 
effects are associated with the increased generation of ROS, 
activation of the inflammatory cascade and insulin resistance. 
The levels of HO-1 expression, HO activity and its products, CO 
and bilirubin, are decreased in humans and in animal models of 
type-2 diabetes [31]. In conclusion, the induction of HO-1 appears 
to modulate metabolic syndrome, obesity, and insulin resistance, 
and recent data provide evidence for the involvement of the HO–
adiponectin-EET axis in adipogenesis and adipocyte signaling 
both in vitro and in vivo [32].

Heme-Oxygenases Inducers (Table 1)
A lot of natural agents have been recognized for their capacity 

to induce HO-1 in different tissues. Most of these compounds are 
characterized by a phenolic structure, similar to that of alpha-
tocopherol, and present antioxidant properties.

Table 1: Chemical structures of heme oxygenase inducers.

Name Chemical Structure

Curcumin and analogues
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Resveratrol (trans-3,4,5-trihydroxystilbene)

Quercetin (Flavonoids: flavonols, isoflavones, flavonones, catechins, 
anthocyanins)

 

Organosulfur compounds

 

 

Diallyl silfide (DAS)

 

Diallyl disulfide (DADS)

 
 

Diallyl trisulfide (DATS)

 
 

Isothiocyanates: Glucosinolates (beta-thioglucoside N-hydroxysulfates)

 

Lithospermic Acid B (phenolic acid from tanshen: rhizome of Salvia 
Milthiorrhiza Bunge)

 

1,2,3,4,6-Penta-O-galloyl-beta-D-glucose (PGG)
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Scopoletin

 

Fraxetin

 

Caffeic acid phenetyl ester (CAPE)

Pharmacological Inducers of OH-1

Carnosol

Dimethylfumarate

Isothiocyanate-cysteine

Cobalt protoporphyrin (CoPP): CoPP IX
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Tricycles containing nonenolizable cyano enones (TCEs)

Celecoxib

Naproxcinod

Hemin

NO-releasing compounds: e.g. Sodium Nitroprusside
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Statins: e.g. Atorvastatin

Natural heme-oxygenase-1 inducers
A number of natural antioxidant compounds contained in 

foods and plants have been demonstrated to be effective non-
cytotoxic inducers of the response protein HO-1 in various 
cellular models. Most of these compounds that induce HO-1 are 
characterized by phenolic structures and it is speculated that Nrf2 
is involved in this induction of HO-1 [33]. The effects of various 
concentrations of a natural polyphenolic stilbene, resveratrol, 
on HO activity and HO-1 protein expression in different 
experimental conditions have been tested. Resveratrol is a non-
flavonoid compound produced naturally by plants including 
grapes, peanuts, cranberries and blueberries. Resveratrol is the 
major polyphenol in red wine and has been shown to prevent 
or slow the progression of a wide variety of diseases [34]. The 
most extensively investigated HO-1 inducer is another natural 
compound, curcumin (diferuloylmethane). The effects of 
curcumin are associated with cellular protection against ROS. 
The level of HO-1 expression was found to highest with curcumin, 
followed by demethoxycurcumin and bis-demethoxycurcumin. It 
has been suggested that the presence of methoxyl groups in the 
ortho-position on the aromatic ring are essential to enhance HO-1 
expression [35]. 

Pharmacological interest approach of HO-1 inducers 
Manipulation of the Nrf2/HO-1 pathway has been shown 

experimentally to protect against a variety of conditions 
characterized by oxidative damage and inflammation. 
Pharmacologically-active compounds have been used to target 
Nrf2/HO-1. Potent activators of the Nrf2/HO-1 pathway (i.e. 
carnosol, cobalt protoporphyrin, dimelthyl fumarate) have been 
shown to modulate inflammation in mouse microglial cells 
[36]. Metalloporphyrins, particularly cobalt protoporphyrin 
(CoPP) can increase the expression of HO-1. CoPP affects the 
expression of antioxidant genes and recent data indicate that 
CoPP reduces mitochondrial production mediated by Foxo1 [37]. 
A large number of clinical and experimental pharmacological 
compounds have been shown to induce HO-1, via NO metabolism. 
The different statins with established antiatherogenic or 
cardioprotective activities are able to induce HO-1 [38]. NO-
releasing compounds, such as sodium nitroprusside, S-nitroso-N-
acetylpenicillamine, and 3-morpholinosydnonimine, induce HO-1 
in endothelial cells [39]. Studies suggest that aspirin may exert 
part of its antiinflammatory effect via the NO-mediated induction 

of HO-1 [40]. The increase in HO-1 expression in response to 
other compounds is the result of a complex regulatory network 
involving many signaling pathways and transcription factors. 
Pharmacological doses of insulin have been reported to induce 
HO-1 in renal cells via the phosphatidylinositol 3-kinase/Akt 
pathway and Nrf2 and this may represent a mechanism by which 
insulin protects the kidney in addition to its effect on circulating 
glucose concentration [41,42].

Conclusion
Extensive research has shown that the HO system is closely 

involved in the regulation of various pathophysiological 
processes, in particular in cellular adaptation to oxidative 
stress, and the anti-inflammatory response. It is now well 
recognized that HO-mediated heme degradation has multiple 
roles, including antioxidant and iron reutilization functions. 
The multiple cytoprotective mechanisms of HO-1 make it a 
promising therapeutic target. Regulation of HO-1 activity may be 
a therapeutic strategy for a number of inflammatory conditions 
and it may be important to explore the overall protective roles of 
the HO-1/CO system in the pathogenesis of human cardiovascular 
and vascular diseases. 
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