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Abstract

This article reviews and combines different mathematical methods and techniques in order to model the mitral valve of heart and blood fluid 
movements in the vicinity of the valve. Currently, an echocardiogram is the best thing to study the morphology of the heart mitral valve based on 
images obtained from ultrasound methods. Utilizing mathematical equations and methods, specific echocardiographic data may provide more 
detailed, valuable and practical information for physicians.

The problem is a tissue-fluid interaction. A 3D mitral valve tissue modeling states a boundary condition to study the blood fluid dynamic 
around the mitral valve. The body force interacted between the fluid and mitral valve leaflet tissues, combined with the general Lagrangian-Euler 
equations, gives a fibered model of the mitral valve. This fibered model presents a boundary condition for the solution of the Navier-Stocks 
equation combined with Bernulli’s equation of the blood fluid around the valve. Resulting from the velocity field data due to the convolution of 
the Euleran velocity from Navier-Stocks equation combined with the Bernoulli’s equation with 3D Delta function and the other velocity vector 
field of the blood flow movements due to the convolution of the solution of Lagrange-Euler equations with 3D Delta function, we can apply 
Lagrangian coherent structure (a vector flow mapping method) in order to study topology of blood transport in the mitral valve per cardiac cycle.
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Anatomy of the Mitral Valve of the Heart

Figure 1: The mitral valve of heart components.
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The human heart has 4 valves. The mitral valve connects the 
left atrium (LA) and the left ventricle (LV). The mitral valve opens 
during diastole to allow the blood flow from the LA to the LV. During 
ventricular systole, the mitral valve closes and prevents backflow 
to the LA. The normal function of the mitral valve depends on its 6 
components, which are (1) the left atrial wall, (2) the annulus, (3) 
the leaflets, (4) the chordae tendineae, (5) the papillary muscles, 
and (6) the left ventricular wall (Figure 1) [1-5].

A 3D echocardiogram image data at the level of the mitral 
valve shows completely the anterior and posterior mitral valve 
leaflet tissues. A muscle volume sample on the mitral valve leaflets 
is realized as a geometrical point in the 3D space (Figure 2).

Figure 2: A muscle volume sample on the mitral valve leaflets in 
a 3D echocardiographic image.

Figure 3: A muscle volume sample on the mitral valve leaflets is 
considered as a geometrical point in the 3D space.

We attach a system of coordinate to these geometrical 
points till we can able to present the motion and deformation  

components. Joined Cartesian tissue position 1 2 3
( , , )X X X  on the 

mitral valve leaflet with curvilinear coordinate 1 2 3
( , , )P P P , we 

have a new coordinate for considered tissue ,
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We can reformulate the force parameter over the time at point “q” 
by this partial differential equation
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Fibered curve generated by point “q” within a cardiac cycle 
based on velocity, strain, force vectors and generalized Lagrangian 
equations:

The next step is to design mathematical equations to find the 
rout which passes from “q” based on Lagrangian-Euler equations. 
Lagranjian-Euler equations for point “q” is described by the 
following reformulation based on echo datasets:
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equations as well:
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Figure 4: A schematic figure that presents what’s happening on 
the blood fluid in the mitral valve of the heart by the mathematical 
equations points of views. h is the maximum height of the blood 
fluid that is ejected from the orifice of the mitral valve to the left 
ventricle of the heart, blue point; is an arbitrary point near the 
middle of the mitral valve leaflets, 0

P , a based fix point behind 
the mitral valve. f; determined the flow shape from point a to 0

P  
based on Bernoulli’s equation. 

AML: Anterior Mitral Valve Leaflet; PML: Posterior Mitral Valve 
Leaflets
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The solution of these equations generate a fibered rout 
where passes from point “q” within the cardiac cycle. We call it  

q
R . Combining Navier-Stocks equation and Bernoulli’s equation, 
one can make a solution of a new system of partial differential 
equations of the blood fluid velocity around the mitral valve 
(Figure 4).

At first, The problem is to determine the shape f(y) of a wire 
equation notch (here the notch is considered the orifice of the 
mitral valve and a wire equation is realized by the streamline flow 
behind the mitral valve and a modeling of mitral valve leaflets), an 
opening in mitral valve leaflets, in which the volume flow rate of 
fluid, Q, through the orifice is expressed as function of height h of 
the orifice.

Assuming Bernoulli’s equation can be applied between the 
point “a” and “y” in Figure 4 [6,7], we obtain

             2
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P ”; g is the graviational acceleration and  is the fluid 

density.

The pressures at “a” and “y” are both taken to be nearly 
atmospheric so that a 0

P P
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=  and the velocity at “a” is assumed 
to be negligible ( 0)
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V =  since the fluid behind the orifice is slow 

moving. Thus, (*) becomes
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Gives the velocity of the fluid at distance “ 0
y  ” behind the 

orifice of the mitral valve in Figure 4.

The elemental area is given by:
( )0dA 2f y dy=

So, by definition, the elemental volume flow rate through dA is
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Denoting ( )1/22 2g  by c and integrating (**) from y=0 to y=h 
gives the total volume flow rate through the orifice of the mitral 
valve:
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We find f(y) by finding f(h) inversely by the following formula:
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Let, P  and fb  are velocity, pressure and force of the blood 
fluid respectively. f  is the derivation of the shape of blood fluid 
movements exit from the orifice of the mitral valve and near the 
mitral valve (Figure 4).

We Modify Navier-Stocks equations by the above assumption:

(***)   2. 0 . 0u u u P u fbandCurlu and u f
t

ρ µ∂ + ∇ + ∇ = ∇ + = ∇ = 
∂ 



Such that fb F δ= ⊗∫ , δ  is the 3D Delta function. Solving 
(***) gives “u” as the velocity vector field of the blood fluid around 
the mitral valve.  U u δ= ⊗∫  is realized as the Lagrangian velocity 
of the blood fluid around the mitral valve and  q

r R δ= ⊗∫  is 
considered as the Lagrange-Euler velocity of the blood fluid [8-
11].

Lagrangian coherent structures (LCS) can be applied to study 
blood transport in the mitral valve of heart. Resulting velocity 
field data were used to perform trajectories-based computation 
of. LCS were shown to reveal the boundaries of blood injected and 
ejected from the mitral valve over multiple beats.

We define two trajectories ( ), ,px t t p  and ( ), ,py t t p  for the 
mitral valve by the following way: 

 ( , , ) ( , , )
p p

x t t p U t t p=

( , , ) ( , , )
p p

y t t p r t t p=
 

This enabled qualitative and quantitative assessments of 
blood transport patterns and residence times in the mitral valve 
of the heart [12-17].
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