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Abstract

We still need to learn a lot about the effects of redox therapy on complex ventricular arrhythmia in Chagas heart disease (ChHD), caused by 
the parasite Trypanosoma cruzi. The evidence has pointed toward oxidative stress and the consequent loss of modulation of redox signaling as 
an important pathogenic factor in ventricular arrhythmias in ChHD. The central purpose of this article will be to promote a better understanding 
of the arrhythmic influence of the loss of redox signaling-ROS and RNS modulation, focusing on the arrhythmogenic mechanisms of complex 
ventricular arrhythmias. Still, we will provide the reader a therapeutic rationality in relation to antioxidant and complex ventricular arrhythmias.
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Introduction
Chagas’ disease (ChD), also known as American trypanosomi-

asis, is a serious chronically debilitating and often fatal human en-
demic infectious-parasitic affection caused by Trypanosoma cruzi, 
transmitted through a hematophagous triatomine vector [1]. It is 
estimated that up to 5,800,000 people in Latin America endemic 
countries have chronic ChD causing around 12,500 deaths annu-
ally. Hundreds of thousands of infected people has migrated to 
non-endemic areas, mainly in many parts of Europe and North 
America, becoming an emerging disease and a worldwide prob-
lem [2].

Figure 1 show a diagram of the natural history of Chagas 
disease. There are 2 phases of the human disease: the acute, 
which begins about 1 week after the initial infection and is 
usually asymptomatic; and the chronic, which is subdivided into 
indeterminate and clinical (cardiac, digestive, or mixed) forms. 
The clinical presentation in cardiac form is usually mild (80-
90%) with annual incidence relatively low (1.85%). The Figure 2 
displays a proposed algorithm to guide diagnosis in patients with 
Chagas heart disease (ChHD).

Figure 1: Diagram of the natural history of Chagas disease. There 
are 2 phases of the human disease: the acute, which begins about 1 
week after the initial infection and is usually asymptomatic; and the 
chronic, which is subdivided into indeterminate and clinical (cardiac, 
digestive, or mixed) forms. The clinical presentation in cardiac 
form is usually mild (80-90%) with annual incidence relatively low 
(1.85%). Modificated from Rassi Jr A et al. [56] with permission.
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Figure 2: Proposed algorithm to guide diagnosis in patients 
with Chagas heart disease. People of risk to acquiring Chagas 
disease (people who lives in rural areas of South America, 
Central America and Mexico under poor housing conditions 
that contains infected bugs; who receives a blood transfusion or 
organ transplant from an infected donor; Children who are born 
from an infected mother) with ECG showing the 3 most typical 
alterations: right bundle branch block, left anterior hemiblock 
and ventricular extra systole. Two-dimensional echocardiogram 
showing left ventricular apical aneurysm with (arrow) and without 
thrombus. Modificated from Rassi Jr A et al. [56] with permission.

There is a consensus that for every chagasic patient with 
evidence of cardiac involvement we should consider the potential 
risk of death (annual mortality rate of 39/1000 patients) and of 
annual sudden cardiac arrest (SCA) rate of 24/1000 patients in 
the cardiac form of the disease) [3-5]. SCA is one of the main ways 
of death in ChHD and can occur at any stage of the disease [6]. The 
risk of SCA is related to the presence of ventricular arrhythmias, 
10% are due to a first arrhythmic event in ChHD. At moment, in 
patients with ChHD, there is no data to support recommendations 
of implantable cardioverter defibrillator (ICD) for the primary 
prevention of sudden death and ICD are empirically and commonly 
used for secondary prevention with significant economic burden 
[5]. This is due to the fact that the mechanisms underlying these 
lethal arrhythmias are still poorly understood despite decades of 
research.

Typically, ChHD is characterized by a persistent chronic active 
myocarditis as resulted of an amplified immunoinflammatory 
response among other processes by generation of reactive oxygen 
species (ROS) in the presence of the parasite or its antigens [7-
13]. It suggests that ChHD is, at least partially, a ROS-dependent 
pathology (Figure 3). In fact, in the last fifteen years, this concept 
of loss of redox signaling-ROS modulation has increased [14,15]. 
In addition, the incidence of ventricular arrhythmias, the leading 
cause of SCA, is associated with progression and extension of 
inflammatory processes, and, probably is especially related 
to re-entry pathways generated by resultant patchy fibrosis 
[2,6,12,13,16,17]. So, it is reasonable to speculate that loss of 

redox signaling-ROS modulation can be regarded as a potential 
driver of cardiac arrhythmia in ChHD.

Figure 3: Schematic view of reactive oxygen species production. 
Diagram showing the inflammatory process leading to oxidative 
damage through the production of reactive oxygen species.

Pathogenesis of ChHD with special focus on Oxidative 
Stress

Mounting evidence have suggested that macrophages, 
neutrophils and natural killer cells control parasite replication 
in the early stages of human infection [18-21]. Experimental 
studies have indicated that Tc-derived molecules engage toll-like 
receptors to drive activation of macrophages and neutrophils 
that then produce oxidative burst [11,22]. Some studies have 
demonstrated that oxidative burst is due to mitochondrial 
oxidative dysfunction due to T. cruzi–induced intracellular Ca+2 
flux, required for parasite invasion. The mitochondrial inefficiency 
in the setting of oxidative phosphorylation continues during the 
disease chronic phase [23,24] resulting in an inadequate coupling 
of the respiratory chain with oxidative phosphorylation and an 
excessive release of electrons to molecular oxygen, leading to 
an increased mitochondrial ROS production. The role played by 
ROS-producing macrophages at the chronic stage of infection 
has been little evaluated and it is still a matter of debate whether 
indeed oxidative environments provide ideal conditions (e.g., iron 
availability in macrophages) for T. cruzi growth and whether indeed 
redox signaling directly to stimulate growth. Garg et al considered 
the activation of SIRT1 a potential means to restore mitochondrial 
respiratory chain activity and oxidative phosphorylation capacity 
as well as to induce mitochondrial biogenesis, processes they 
found earlier to be impaired in the myocardium of chronically 
infected rodents [25]. The declines in left-ventricle function and 
in the expression of Nrf2, HO-1, and gamma-glutamylcysteine 
synthetase (GCS) were prevented in the hearts of Superoxide 
dismutase - SOD2 (MnSOD) super expressing transgenic mice 
[26]. Mice that are deficient for the IFN-y receptor and inducible 
•NO synthase (iNOS) showed an increased infection risk [27]. 
Experimental studies in animals infected with Trypanosoma 
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cruzi are suggestive that drugs, which attenuate oxidative stress, 
prevent evolution of cardiac injury [28-30].

Studies in humans have provided indirect evidence for the 
oxidative function of activated macrophages and neutrophils 
[12,31-34]. It was recently demonstrated the interlinked effects of 
inflammatory responses, antioxidant status and oxidant levels in 
human ChHD [12,26,35]. These interlinked effects were thought 
to be related to heart function damaged. Thus, protection against 
ROS has the potential to decrease tissue damage in ChD [36-38]. 
Since then, several publications have followed this idea [36-40]. 
Our research group have shown that the progression of cardiac 
involvement in human ChD [7] might be mediated by ROS, and 
that the use of antioxidant vitamins E and C was effective in 
attenuating such oxidative insult in the different stages of cardiac 
involvement of the disease [7-10].

The central purpose of this manuscript will be to promote a 
better understanding of the arrhythmic influence of the loss of 
redox signaling-ROS modulation, focusing on the arrhythmogenic 
mechanisms of complex ventricular arrhythmia. Still, we will 
provide the reader a therapeutic rationality in relation to 
antioxidant and complex ventricular arrhythmias

Oxidative stress and ventricular arrhythmias in ChHD
Studies relating ventricular arrhythmias and ROS in ChHD are 

scarce, and the current load of knowledge relies largely on studies 
transposed from other cardiomyopathies.

Information on how alterations of ROS may alter ventricular 
arrhythmia susceptibility are still to be fully understood. Many 
of the experimental observations agree with the more limited 
number of human studies. Mice engineered to over-express 
tumour necrosis factor-α(TNF-α) have been commonly used 
as a model of congestive HF, exhibiting many ion channel 
conductance abnormalities and increased susceptibility to 
induced arrhythmias compared to wild-type controls [41]. These 
are associated with change in the electrical restitution property 
of the heart and dysregulated intracellular calcium homoeostasis 
[42]. Accumulation of ROS resultant from loss of modulation of 
redox signaling very possibly by over boarding inflammation 
may lead to cardiac Ca++ overload, and then induce delayed 
after depolarization (DADs), which is likely to initiate triggered 
activity and ventricular arrhythmias. It was reported that complex 
ventricular arrhythmias may be derived from calcium wave [43] 
and caused by diastolic calcium leakage [44]. When the calcium 
wave reaches threshold potential, DADs are induced, leading to 
ventricular arrhythmia or even SCA. These abnormal findings 
were corroborated in an experimental mouse model of T. cruzi 
infection that showed shortens corrected QT interval (QTc) 
after the intervention of the antioxidant resveratrol [36]. These 
effects of ROS leading to cardiac Ca++ overload in animal’s studies 
have been consistent in the related literature and point to as the 
mechanism underlying in the ventricular arrhythmogenesis. 
Although the full mechanism of action remains to be elucidated, 

several research groups have explored the possibility that nitric 
oxide (•NO) is involved in both central and peripheral aspects of 
vagal control in terms cardiac arrhythmogenesis [45]. In the last 
years, studies have shown that stimulation of the vagal nervous 
system (VNS) makes induction of VF more difficult underscoring 
that VNS has a direct and prominent electrophysiological effect 
on the ventricular myocardium. It was also showed that this anti-
fibrillatory effect is associated with a change in the electrical 
restitution property of the heart [45], which is considered a key 
mechanistic factor in the initiation of ventricular fibrillation [46]. 
These effects are blocked during nitric oxide synthase (NOS) 
inhibition, providing indirect evidence that •NO is involved [47]. 
A further study showed direct evidence that VNS lead to the 
release of •NO in the ventricle via neuronal nitric oxide synthase 
(nNOS/NOS1) activation [48]. This effect was showed in other 
related studies [49,50]. At the same time, it is known that nNOS is 
present in many parasympathetic neurones innervating the heart 
[51] and there is also evidence of a subpopulation of intracardiac 
nerve fibres that contain solely •NO coursing towards the 
ventricle in humans [52]. It has been postulated to cause electrical 
restitution property disturbances and to ultimately leading to the 
development of complex ventricular arrhythmias [53,54]. These 
results indicate a physiological role of these intermediaries in 
loss of modulation of redox signaling with important impact on 
ventricular arrhythmogenesis.

In many aspects the ChHD follows a pattern like that 
described in experimental models of Oxidative stress (OS), via 
overgeneration of ROS and RNS disturbances in the ventricle. 
The mechanistic studies identifying i) the mediators produced 
by cardiomyocytes in response to Trypanosoma cruzi infection, 
that may trigger the migration of leukocytes and other cells 
to the heart; ii) the signaling mechanisms regulated by the 
inflammatory cytokines (e.g. TNF-α and IL-1) that may evoke 
cell survival/cell growth or cell death responses in chagasic 
myocardium; and iii) the destructive effects of “oxidative burst” 
of activated inflammatory cells in ChHD, are discussed elsewhere 
[35]. Nevertheless, highly complex interactions are far from being 
completely clarified, mainly regarding the basic mechanisms, 
thereby creating difficulties in understanding the extensive 
cardiac damage in chronic chagasic patients. With the increased 
demonstration of overgeneration of ROS and RNS disturbances in 
ChHD, the hypothesis that ROS may contribute, at least in part, 
to ventricular arrhythmogenesis in ChHD has gained plausibility 
[35,47,48].

Recently, in a study reported by our group, we speculate a 
possible beneficial effect of the antioxidant supplementation 
limiting the arrhythmic consequences of chronic inflammatory 
response, which is so common in ChHD. We showed that 
the etiological treatment with benznidazole followed by 
supplementation with the antioxidant vitamins E and C decreased 
episodes of complex ventricular arrhythmias in patients with 
severe ChHD [55] as showed in Figure 4. Therefore, the antioxidant 
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supplementation was above all be capable of restoring the balance 
of redox signaling [56].

Figure 4: Impact therapeutic of antioxidant in the prevalence of 
ventricular cardiac arrhythmias (VCA) in patients with chronic 
Chagas heart disease. Patients with chronic Chagas heart 
disease in different degrees of cardiac involvement have a 
significant prevalence of VCA, and these are attenuated by 
antioxidant therapy, particularly in patients with advanced degree 
of cardiac involvement. The reduction of VCA is accompanied 
by decrease of serum marker of oxidative stress (Thiobarbituric 
Acid Reactive Substances-TBARS) in all patients in different 
groups.

Conclusion
A relevant and often ignored facet of chronic ChD is the 

presence, in all chagasic patients in the cardiac form, of ROS 
and the consequent loss of modulation of redox signaling. It is 
reasonable to speculate that ROS can be regarded as a potential 
driver of cardiac arrhythmia in ChHD. Consequently, to counteract 
the arrhythmogenic potency of ROS and RNS, strategies that focus 
on restoration of the balance of redox signaling could be helpful 
for chagasic patients with complex ventricular arrhythmias, who 
are refractory to conventional treatments. Not treating a patient 
with ChHD and complex ventricular arrhythmia is an active and 
more difficult decision to make than to proceed with the doubt. 
Nevertheless, a formal proof-of-concept clinical trial is needed 
to determine if this novel approach is safe and effective in ChHD. 
Because ChD is a neglected disease that kills thousands of persons 
each year, novel and innovative therapies should urgently be 
tested.
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