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Introduction
CAS is a major cause of ischemic stroke and cardiovascular 

disease. At present, the most effective treatment for CAS is 
carotid endarterectomy or carotid artery stenting, but the high 
restenosis rates limit the long-term success [1,2]. Atherosclerosis 
is the pathology basis of CAS; intimal hyperplasia is thought to 
be the main cause for restenosis [3-5]. The pathogenesis of CAS 
has been widely studied in past decades. However, the molecular 
mechanisms of CAS and restenosis have not been clearly 
understood.

DNA damage is the destruction of DNA structure that could be 
generated from DNA replication or a consequence of internal and 
external stimulus, at a frequency of 104 times per single cell per 
day [6]. In recent years, a number of studies demonstrated that 
DNA damage and repair is present in atherosclerosis and CAS [7,8]. 
DNA damage response involve in a variety of cellular processes 
including cell cycle control, cell senescence and apoptosis, which 
may directly or indirectly affect the atherosclerotic formation and 
intimal hyperplasia [9]. In this review, we summarized the current 
knowledge about DNA damage in the development and treatment 
of CAS.

Stimuli that cause DNA damage in carotid artery
Stimuli in vascular that cause DNA damage can be divided into 

two classes based on its origin: endogenous and exogenous. The 
major endogenous stimulus is Reactive Oxygen Species (ROS), 
that can be generated from normal cellular metabolism [10-12],  

 
and exogenous stimuli include physical and chemical agents from 
outside or intracavitary.

ROS can be produced by multiple enzymes in cells, such as 
Nicotinamide Adenine Dinucleotide Phosphate (NADP) oxidase, 
lipoxygenases, xanthine oxidase and mitochondrial enzymes 
[13]. NADPH oxidases is thought to be the most important ROS 
generation system in vascular, the laminar shear stress generated 
by blood flow, inflammation, growth factor and cytokine in blood 
act as catalyzer for NADPH oxidases and promotes ROS generate 
[14]. ROS at normal levels is an important cellular messenger 
and participates in immune response. However, excessive ROS in 
vascular under pathological conditions can add double bonds or 
remove hydrogen atoms from the DNA bases, resulting in many 
types of DNA damage, such as mitochondrial DNA damage, bases 
damage, single-strand break and double-strand break [15]. The 
extensive expression of 8-hydroxy2-deoxyguanosine (8-OHdG) 
and 7,8-dihydro-8-oxo-2-deoxyguanosine (8-oxo-dG), two 
oxidative DNA damage markers [16], is a common feature for 
advanced atherosclerosis lesions. Moreover, ROS in vascular acts 
directly on Vascular Smooth Muscle Cells (VSMCs) and promotes 
proliferation and migration, which are the key mechanism of 
intimal hyperplasia [17].

There is growing evidence suggesting that DNA damage-
inducing treatment is related to artery stenosis. Clinical studies 
have shown that the increased incidence of ischemia stroke in 
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testicular cancer, breast cancer and Hodgkin’s lymphoma patients 
is associated with radiation therapy and chemotherapy [18-
20]. Stewart F et al. [21] demonstrated that ionizing radiation 
accelerates the development of atherosclerotic lesions in ApoE-
/- mice by promoting the aggregation of inflammatory cells in 
atherosclerotic plaques [21]. In patients with malignant tumor, 
radiation and chemotherapy may directly or indirectly induce 
DNA damage in carotid artery. Energy carried by ionizing radiation 
may deposite on DNA bases and directly induce SSBs and DSBs 
[22]. Also, radiation cause water ionization and produce hydroxyl 
to induce DNA damage indirectly [23]. Cytotoxic agents cause 
DNA damage through different pathways. For example, alkylation 
agents directly destroy DNA structure by interacting with DNA 
chain through active groups, and antimetabolites inhibit DNA 
synthesis by interfering with nucleotide metabolism.

DNA damage in the development of CAS
DNA damage and repair associated proteins appears in the 

early stage of atherosclerosis, and the markers of DNA damage 
persist in cells of atherosclerotic plaques and increase in advanced 
lesions [12,24], which could be the consequence of persisting 
stimuli or DNA damage repair deficiency is still unclear. A previous 
study showed the deficiency of homologous recombination, a 
major and highly conserved DSB repair pathway, in carotid artery 
tissues from patients with carotid restenosis [7]. Another study 
by Martin B, et al found that defective base excision repair for 
8-oxoguanine oxidative lesion in atherosclerotic plaque Vascular 
Smooth Muscle Cells (VSMCs), due to the reduced acetylation of 
OGG1, accelerates the development of atherosclerosis [25]. These 
findings raise an important question of whether we can prevent 
the atherosclerosis by improvement the DNA repair efficiency. A 
recent study compared the formation of atherosclerotic plaques 
in two groups of ApoE-/- mice that overexpress wild type and 
C-terminal deleted NBS1 in the VSMCs respectively, NBS1 would 
accelerate DSB repair and C-terminal deleted NBS1 delay repair, 
the overexpression of NBS1 in VSMCs enhanced DSB repair and 
improved the stability of plaques compare to another group but 
did not slowed the atherogenesis [26]. Therefore, the efficiency 
of DNA damage repair may have minimal effects on atherogenesis 
but may underlie some of the therapeutic benefits in preventing 
plaques rupture, especially in CAS.

Although there is no solid evidence that DNA damage directly 
influence atherogenesis and intimal hyperplasia, it has been shown 
that the consequences of DNA damage associate with CAS. DNA 
damage induces the cell cycle arrest by activating DNA damage 
checkpoints, which will guarantee proper time for DNA repair 
[27,28]. Inefficient DNA repair will sustain low level of checkpoint 
activation and result in cell senescence and apoptosis [29]. Mover, 
the CHK1- and CHK2- dependent activation of p53 can induce cell 
apoptosis [9,30]. The senescence and apoptosis of Endothelial 
Cells (ECs), VSMCs and macrophages accelerate atherosclerosis, 
promote features of plaque vulnerability and cause inflammation 
[9,26,31,32]. The cytokine, interleukin, endothelin and nitric 

oxide released by senescent/ apoptotic cells and inflammation 
can induce VSMCs phenotype switch from contractile to secretory 
and phagocytic type, which will further promote the development 
of atherosclerosis and intimal hyperplasia [17,33-35].

DNA damage for CAS treatment
Reducing risk factors of atherosclerosis by pharmacotherapy 

is an effective and safe method for the prevention of CAS. For 
example, Angiotensin Converting Enzyme Inhibitor (ACEI) can 
suppress the inflammatory response and reduce ROS generation 
in arteries by inhibiting the generation of angiotensin and activate 
the angiotensin 2 [36]. Atorvastatin can reduce aldosterone-
induced ROS generation and vascular inflammation through its 
inhibitory effects on Rac1/2 activation [37].

Irradiation as a treatment for suppressing intimal hyperplasia 
was widely studied in past decades, high dose of Ionizing 
Radiation (IR) can kill cells directly through inducing irreparable 
DNA damage [23,38]. IR or radioactive stent implantation at 
early stage can relieve intimal proliferation effectively [39]. The 
IR doses to treat intimal hyperplasia are generally in the range of 
10 to 25 Gy to guarantee good therapeutic effect and low rates of 
complication [22].

A recent study showed that pharmacological inhibition of 
CHK1 significantly reduces vascular remodeling and improves 
hemodynamic parameters in pulmonary arterial hypertension 
rat model through suppressing DNA damage repair [40]. 
Furthermore, the inhibition of PARP-1, a DNA repair enzyme, 
attenuates neointima formation through inhibition of leukocyte 
infiltration in rat carotid artery after balloon injury [41]. These 
results suggest that inhibition of DNA damage repair enzyme may 
be potentially a strategy to prevent intimal hyperplasia.

Conclusion
ROS generated in vascular under pathological conditions is 

the main cause of DNA damage. Cell senescence, apoptosis and 
inflammation caused by DNA damage promotes atherogenesis 
and VSMCs proliferation, which is the major reason for CAS. 
Reducing the ROS generation in vascular by pharmacotherapy is 
an effective way for CAS prevention, the inhibition of DNA damage 
repair enzyme could benefit the prevention of intimal hyperplasia.
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